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Box S1: Quantifying rates of evolution 

Rates of genetic change during the evolutionary divergence of two lineages can be 
inferred by examining differences between genes sequenced from representative 
organisms.  First, orthologous genes (those tracing their ancestry to the same gene in the 
most-recent common ancestor) in each lineage are identified.  Second, the encoded 
protein sequences are aligned and used to align the nucleotide sequence.  Finally, rates 
of change can be estimated, as follows. 

Genetic changes in coding sequences either preserve or alter the encoded amino acid, 
and are correspondingly called synonymous or nonsynonymous changes (Figure B1).  
Counting such changes gives the numerator of a per-site rate.  Counting sites is slightly 
more involved; we employ a physical-sites definition (Bierne and Eyre-Walker, 2003).  
At some sites, such as the third position of the codon CGA (encoding arginine), all 
changes are synonymous, whereas at the second position, all changes are 
nonsynonymous, and at the first position, one change is synonymous (to AGA) and the 
other two are nonsynonymous—that is, the first position is 1/3 synonymous and 2/3 
nonsynonymous.  The sums of the (possibly fractional) synonymous and 
nonsynonymous sites over the length of a coding sequence then give the denominator of 
the per-site rates, computed as the number of nonsynonymous substitutions per 
nonsynonymous site (dN) and synonymous substitutions per synonymous site (dS). 

 
Figure B1: Anatomy of major evolutionary changes between related sequences. 

The relative proportion of transitions (A–G or C–T) to transversions (all other changes) 
(Figure B1) is also used to quantify the types of mutations arising and fixing; both 
transition/transversion ratios (of numbers of each substitution type) and instantaneous 
rate ratios may be estimated (Wakeley, 1996). 
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After sequences have accumulated many substitutions, e.g. due to long periods of 
evolutionary divergence, multiple substitutions may have occurred at the same site.  
Sophisticated estimation methods attempt to infer these “multiple hit” events to yield 
proper estimates.  Analysis of closely related organisms helps to minimize errors arising 
from improper inference. 

 

Supplemental Results 

The positive dS–dN/dS correlation 

Here we demonstrate that a spurious dS–dN/dS correlation can be trivially constructed 
under the assumptions that 1) dN and dS are not independent, 2) dN and dS are roughly 
log-normally distributed, and 3) the relationship between dN and dS is roughly log-log 
linear.  All three assumptions hold for all real organisms analyzed in the main text.  Let 
N(µ,σ) be a normally distributed random variable with mean µ and standard deviation σ.  
Let dN and dS be given by: 

dS = exp[N(−1.5, 0.27)] 

dN = dS2 exp[N(−1,0.7)] 

Using the statistical program R (R Development Core Team, 2007), drawing 1000 genes 
from these distributions yields dN and dS with a mean and variance virtually identical to 
those observed between S. cerevisiae and S. paradoxus, a dN–dS correlation of 
r = 0.54***, and a dS–dN/dS correlation of r = 0.28***.  R code to reproduce this result 
is as follows:  
 set.seed(9) # random number seed, for reproducibility 

n <- 1000  # draw 1000 genes 

 ds <- exp(rnorm(n, mean=-1.5, sd=0.27))  

 dn <- ds^2 * exp(rnorm(n,mean=-1,sd=0.7)) 

 print(cor.test(dn,ds,meth='s')) # spearman rank correlations 

 print(cor.test(dn/ds,ds,meth='s')) 

This result shows that the non-independence of dN and dS, which is well-established 
and for which we provide an explanation in the main text, is sufficient to generate a 
strong positive dS–dN/dS correlation. 

In short, the dS–dN/dS correlation is almost certainly an artifact of  the dependence 
between dN and dS, and has no unique biological significance.  The results of the 
simulation suggest that the non-independence of dN and dS can be explained by 
selection against mistranslation-induced misfolding. 

Measuring codon bias in mammals 

Throughout the main text, we use the fraction of optimal codons, Fop, to score the use of 
preferred codons in E. coli, yeast, worm, and fly, as is common practice.  Use of Fop is 
questionable in human because it is clearly distorted by local nucleotide content.  Most 
optimal codons are GC-ending in human, and GC content varies regionally across the 
genome; accordingly, as Figure S7 shows, Fop, third-codon-position GC content, and 
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intronic GC content are bimodal in human.  In mouse, this distortion is not evident to 
the eye.  To control for these effects, we use the measure FopGC (see Experimental 
Procedures), which considers only codons which encode a four-fold or six-fold 
degenerate amino acid (L, V, S, P, T, A, R, or S, the only amino acids that possess both 
G- and C-ending codons) and end in G or C.  In exactly this subset of codons, the third-
position GC content is identical for all genes and synonymous codons ending in G or C 
are possible.  As Figure S7 shows, bimodality is largely removed from FopGC.  The 
measure is surely imperfect, but has the merit of simplicity. We use FopGC when 
analyzing both mouse and human, although in mouse, Fop is relatively well-behaved and 
yields mostly similar results in all our analyses (not shown).  In the main text we carry 
out several more sophisticated tests to specifically detect selection for translational 
accuracy and determine whether these codons are indeed optimized for accurate 
translation. Use of FopGC in place of Fop for E. coli, yeast, worm, or fly yields 
essentially identical results in all our analyses (not shown), suggesting it remains a valid 
measure of preferential codon usage. 

Confounding influences in mammals revealed by patterns of nucleotide composition 

Two deviations in sign separate human from the other organisms: Fop–ts/tv-ratio 
(r = −0.1***) and Fop–dS (r = 0.27***) (Figure 1B), with the latter being a particularly 
radical departure.  The Fop–dS deviation persists when evolutionary rates in human are 
measured relative to orthologous macaque genes rather than dog genes (r = 0.25***), 
implicating an ongoing effect in the primate lineage.  The variance explained by the 
Fop–dS correlation is reduced more than 40-fold by statistically controlling for intronic 
guanosine and cytosine content (GCi) using partial correlation (r = 0.04***), which also 
reverses the Fop–ts/tv-ratio correlation (r = 0.06***), suggesting both relationships are 
mediated by a process which acts on genomic regions, likely methylated CpG 
hypermutation. 

To determine whether differences in the sets of genes being analyzed explain the 
apparent contrast between mouse and human, we compared only the 2,955 genes in our 
analysis that are present in both organisms; the human (dog) Fop–dS remained positive, 
r = 0.28***, and the mouse (rat)  correlation remained negative, r = −0.08***.  Neither 
can changes in codon usage explain the difference, because comparing the human 
gene’s Fop to the mouse ortholog’s dS yields r = −0.05**, while the mouse Fop and 
human dS correlate with r = 0.27***. 

To understand the differences, we then examined the GC content of introns, which 
reports on mutational bias and gene conversion.  In human, the dS–GCi correlation 
(r = 0.44***) profoundly differs from mouse (r = −0.01), whereas a substantial Fop–GCi 
correlation appears in both mouse and human (r = 0.42*** and 0.53***, respectively).  
The latter is expected because intronic and exonic nucleotide content correlate in most 
organisms and mammalian optimal codons almost exclusively end in G or C.  Together, 
these results suggest that mutational bias or gene conversion have accelerated 
synonymous changes in the human lineage, creating a positive Fop–dS correlation as a 
side-effect. 

Among the dominant mechanisms of composition-biased mutation in mammals is 
deamination of 5-methyl-cytosine-(phosphate)-guanine (mCpG) dinucleotides to yield 
TpG and a T-G mismatch which is repaired incorrectly half of the time to A-C on the 
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opposing strand for a net loss of CpG (and thus GC) content (Bird, 1980).  GC content 
varies regionally in mammalian genomes, likely due to GC-biased gene conversion 
(Duret et al., 2006).  Consequently, in GC-rich regions where CpG dinucleotides occur 
more frequently by chance, mCpG mutations will specifically destroy them.  If observed 
CpG abundance relative to expectation based on single-nucleotide frequencies is 
quantified by the ratio of the proportion of CpG to the product of proportions of C and 
G, a measure we denote dCpG, the hypermutation hypothesis predicts a negative 
correlation between GC content and dCpG in species (namely vertebrates) which 
methylate CpGs.  Computing GC proportion and dCpG using intronic sequences for 
orthologous mouse and human genes, we find dramatic dinucleotide depletion in human 
(GCi–dCpG r = −0.68***), less in mouse (r = −0.51***), and no depletion in 
invertebrates (fly r = 0.04, worm r = 0.25***).  Consistent with its lesser influence in 
mouse than in human, mCpG hypermutation appears less consequential for 
synonymous-site evolution.  Elevated regional hypermutation should lead to accelerated 
CpG depletion and elevated synonymous-site evolution, predicting a negative 
correlation which is observed in (human dS–dCpG r = −0.36***) but not mouse 
(r = 0.06**).  

Such divergent results confirm the expectation that patterns of evolutionary rate 
variation conserved across vertebrates and invertebrates are unlikely to arise from CpG 
hypermutation.  At the same time, they confirm more extensive analyses on smaller 
datasets which indicate that CpG hypermutation drives primate synonymous-site 
evolution (Subramanian and Kumar, 2003).  We have attempted to mute this effect in 
human correlations by controlling for intronic GC proportion, with the understanding 
that such controls are necessarily imperfect. 

A unique fitness function describes protein misfolding costs 

Let the fitness of an organism 0)( >mf  be a monotonically decreasing function of the 
amount of protein misfolding m  with a continuous first derivative f ´ and f (0) = 1.  
Assume that misfolded protein is non-specifically toxic, such that any change mΔ  in the 
amount of misfolded protein produces the same fitness disadvantage 

1)(/)( −Δ+= mfmmfs .  We claim these assumptions determine )(mf  up to a 
constant.  Proof: We consider mΔ > 0 without loss of generality.  Consider two genes 
expressing amounts 1m  and 2m  of misfolded protein.  Then: 



Cell, Volume 134 

 5 Drummond and Wilke 

cm

dcm

emf
emf

dcmmg
cmg

xgxg
mgmmgmgmmg

mf
mmf

mf
mmf

mf
mmf

mf
mmf

ss

−

+

=

=

+=
=′

′=′
−Δ+=−Δ+

Δ+
=

Δ+

−
Δ+

=−
Δ+

=

)(
)(
)(
)(

)()(
)()()()(

)(
)(ln

)(
)(ln

1
)(

)(1
)(

)(

21

2211

2

2

1

1

2

2

1

1

21

 

Note that in this model, polypeptides have no production cost, and misfolding does not 
impede the synthesis of a full complement of properly folded proteins.  The only cost is 
the toxicity of misfolded proteins produced during synthesis. 
 
Supplemental Experimental Procedures 

Coding DNA sequences were built from coding exon sequences which were extracted, 
along with intronic sequences, from chromosomal DNA sequences, except for E. coli 
and yeast which were downloaded in pre-annotated gene format.  Ortholog assignments 
were obtained from TIGR (Peterson et al., 2001) (E. coli and S. typhimurium, using 
reciprocal best BLAST hits with P < 10−20), Ensembl’s (Birney et al., 2006) BioMart 
homology track (human, dog, mouse, rat), WormBase’s (Rogers et al., 2007) 
WormMart (worm), the Saccharomyces Genome Database (Hong et al., 2006) (yeast), 
and the Drosophila 12 Genomes Consortium AAAWiki website (Clark et al., 2007) 
(fly).  Protein alignments were generated with MUSCLE 3.6 (Edgar, 2004) and used to 
align gene sequences, except for fly where alignments were downloaded from the 
AAAWiki website.  A single cDNA per gene was randomly chosen from each gene that 
showed evidence of alternative splicing.  Only cDNAs with 80% alignment to their 
ortholog, dS < 2 except as noted, and at least 30 codons were retained; final cDNA-
ortholog pair counts (and those with mRNA expression data in parentheses) were: 
E. coli vs. S. typhimurium, 2,786 (2,229); S. cerevisiae vs. S. paradoxus, 4,616 (4,292); 
C. elegans vs. C. briggsae, 4,173 (2,386) (genes with dS < 4 were retained); D. 
melanogaster vs. D. yakuba, 7,070 (6,649); M. musculus vs. R. norvegicus, 9,061 
(6,167); H. sapiens vs. C. familiaris, 5,939 (3,180). 

Evolutionary rates and transition/transversion rate ratios were computed by maximum 
likelihood with PAML (Yang, 2006; Yang, 1997) using a physical-sites definition 
(Bierne and Eyre-Walker, 2003; Yang, 2006) operating on codons (codeml program) 
with the F3×4 codon frequency model, one dN/dS ratio per branch (model 0), and an 
arbitrary seed ts/tv rate ratio of 3.4.  Ts/tv ratios were computed by counting transitions 
and transversions separating orthologous sequences, adding 1 to each (Laplace 
estimation), and taking their ratio.  Distributions of dN and dS for all organisms are 
shown in Supplementary Figure S5. 
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We used previously reported mRNA levels for E. coli (Covert et al., 2004), yeast 
(Holstege et al., 1998), worm (Hill et al., 2000), fly (Chintapalli et al., 2007), mouse and 
human (Su et al., 2002).  For E. coli, the geometric mean of four expression 
measurements under aerobic growth (ec_aer_wild_nO_[a-d]) was used.  For worm, 
expression levels were as reported ((Hill et al., 2000), their Table 2A).  For fly, mean 
levels in eleven adult tissues for probes with unambiguous FlyBase-gene-ID-to-probe 
matches were used.  For human, the U133A and GNF1H array signals were merged and 
unambiguous Ensembl-peptide-ID-to-probe matches were retained; for mouse, the 
GNF1M array signal was used and unambiguous Ensembl-transcript-ID-to-probe 
matches were retained.  Multiple signals for  the same transcript were averaged.  For fly, 
mouse and human, aggregate mRNA level was quantified as the geometric mean signal 
across all normal adult tissues. 

Breadth of expression was computed using presence/absence calls.  Tissue specificity 
was computed as described (Liao et al., 2006), except that all measurements were 
divided by a minimum expression value (0.1 for all species), zero values were set to this 
minimum value, and log-transformed expression values were multiplied by 1 if the gene 
was called present in that tissue and by 0 otherwise.  Without the minimum-value 
adjustment, tissue specificity is not guaranteed to fall between 0 and 1 as asserted (Liao 
et al., 2006) because logarithms of values below 1 are negative. 

We used published optimal codons for E. coli (Sharp and Li, 1987), yeast (Sharp and 
Cowe, 1991), worm (Sharp and Bradnam, 1997), fly (Duret and Mouchiroud, 1999) and 
human (Comeron, 2004).  For mouse, optimal codons were defined as those 
corresponding to tRNAs with the highest gene counts in the set of 335 high-confidence 
tRNA genes identified by Waterston et al. (Waterston et al., 2002) (Supplementary 
Table S2).  5′ adenine in the anticodon was presumed to be quantitatively modified to 
inosine, which prefers to bind 3′ cytosine.  The fraction of optimal codons, Fop, was 
calculated as described (Duret and Mouchiroud, 1999).  In human and mouse we used 
the related measure FopGC (see Supplementary Results and Supplementary Figure 
S7). 

Translational accuracy selection was first tested exactly as described using Akashi’s test 
(Akashi, 1994); the resulting Z-score, when squared, yields the standard Mantel-
Haenszel χ2 statistic ((Sokal and Rohlf, 1995), p. 766).  Sites with the same amino acid 
at the aligned position in the orthologous gene (or for the simulation, in all ancestral 
proteins on the line of descent) were designated conserved.  In a second test, 
significance of the optimal–conserved association, randomized over the choice of 
optimal codon set, was assessed by computing the odds ratio for all possible alternate 
optimal codon sets which preserve the number of optimal codons per synonymous 
family in the naturally occurring set. 

Gene dispensability in yeast was quantified using high-throughput growth-rate data 
from gene deletion strains grown under reference conditions (Warringer et al., 2003); 
because essential genes were not captured in these data, they were supplemented with 
essentiality data from an earlier study (Giaever et al., 2002).  Fitness defect values s for 
each gene were computed as si = ln(ri/rmax), where ri is the growth rate (fitness) of the 
strain having gene i knocked out and rmax is the maximum observed growth rate.  This 
additive formulation for s yields values between negative infinity (for essential genes) 
and zero (complete dispensability).  For the dispensability-fitness simulation, in which 
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fitness = e−s(1−f), s for essential genes was set to −10.  Under this definition, the additive 
fitness effect of the knockout strain (f = 0) relative to wild type (assumed to have f = 1) 
is s, the dispensability.  During the simulation timeframe, although some genes were 
almost completely dispensable, no genes were actually lost in the sense of accumulating 
mutations which critically destabilized the encoded protein. 

 

 

 

 

 

Figure S1.  Distributions of the odds ratio for finding optimal codons at conserved sites, 
evaluated over all possible sets of codons that are synonymous with the established set 
of preferred codons.  The odds ratio for the established set is indicated with an arrow.  
A, All organisms.  B, The simulation, evolved with (left) and without (right) misfolding 
costs. 
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Figure S2: Correlations of per-tissue mRNA levels with dN, dS, and ts/tv ratio for fly 
(A), mouse (B), and human (C, controlled for intronic GC content) vary systematically 
across tissues when only genes with below-median tissue specificity of expression are 
considered; cf. Figure 4.
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Figure S3. Overview of a large-scale simulation of genome evolution under selective 
pressure to avoid protein misfolding induced by mistranslation.  Organisms (left) 
possess genomes consisting of 500 nucleotide sequences encoding 25-amino-acid 
polypeptides which fold according to a simple thermodynamic model.  Proteins may 
translate and fold properly (A), or translate with at least one error, causing truncation 
(B), adoption of a non-native structure (C), folding to the native structure but with 
insufficient stability (D), or folding stably despite the error (E).  Outcomes B, C and D 
are designated misfolded and impose a fitness cost.  Certain codons are translated with 
higher error rates (red codons). 
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Figure S4.  Results of evolutionary simulation when genes have different 
dispensabilities (growth-rate defects upon knocking out the gene) suggests that loss of 
functional molecules, rather than gain of costly molecules, is unlikely to explain the 
observed organismal patterns. A, Correlations between the five analyzed variables after 
evolution under a fitness function in which each gene has an individual growth-rate 
defect of knocking out the gene, s, and fitness = exp[s(1 − f)] with f the fraction of 
folded proteins.  As in Figure 1A, lower triangles show correlation coefficients, upper 
triangles show signs, and black squares indicate insignificant correlations (P > 0.05).  B, 
The simulation carried out from identical initial conditions as in A, but with the original 
translational fitness cost.  C, Results from yeast (cf. Figure 1A) for comparison. 
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Figure S5: Evolutionary rate distributions for the six organisms analyzed. A, 
Nonsynonymous substitutions per nonsynonymous physical site (dN); B, Synonymous 
substitutions per synonymous physical site (dS). 
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Figure S6.  How the selective disadvantage of switching an optimal codon to a non-
optimal codon changes as a function of expression level in the simulation.  A, 
Expression level versus the fraction of optimal codons in yeast.  B, Expression level 
versus the fraction of optimal codons in the simulation.  C, The average selective 
disadvantage s = 1 − funopt/fopt (where f is the growth rate), multiplied by the population 
size (N = 1,000), induced by the change of one codon from optimal to non-optimal in 
each simulated gene, as a function of expression level.  If we infer from the qualitative 
agreement of the simulation and yeast mRNA-level–Fop curves that the scaled selective 
disadvantages Ns are roughly equivalent, then the selective disadvantage of a single 
codon change in yeast may be estimated. The estimated effective population size for 
yeast is N = 107–108 (Lynch and Conery, 2003), and the highest-expressed gene should 
have Ns ~ −100.  This yields a disadvantage of s ~ −10−4 to −10−5 (i.e., a mutant strain 
bearing a non-optimal codon in one of the most highly expressed genes would be 
expected to grow 0.01–0.001% slower than wild type). 
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Figure S7: FopGC (fraction of optimal codons, controlled for guanine+cytosine content) 
largely eliminates major problems with Fop as a measure of mammalian codon bias.  A, 
Measures in human of fraction of optimal codons show bimodal behavior.  B, Third-
position guanine+cytosine (GC) content mirrors the bimodality, as does intronic GC 
content (C), suggesting that the bimodality of the previous two measures reflects 
regional biases in nucleotide content.  D, The FopGC measure largely eliminates 
bimodality due to nucleotide-content biases.  Left, human; right, the same measures in 
mouse. 
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Table S1. Spearman rank correlations between nonsynonymous- and synonymous-site 
substitution rates (dN and dS), mRNA expression level, fraction of optimal codons 
(Fop), and transition/transversion (ts/tv) ratio and codon bias for yeast, fly, mouse, 
human and simulated organisms. 

 

Correlation E. coli  Yeast  Worm  Fly  Mouse  Human  

dN–dS 0.641*** 0.372*** 0.538*** 0.475*** 0.329*** 0.473*** 

dN–mRNA-level −0.389*** −0.462*** −0.278*** −0.384*** −0.190*** −0.163*** 

dN–Fop −0.542*** −0.511*** −0.277*** −0.444*** −0.090*** 0.017 

dN–ts/tv−ratio −0.694*** −0.571*** −0.768*** −0.583*** −0.564*** −0.591*** 

dS–mRNA-level −0.441*** −0.297*** −0.352*** −0.198*** −0.043*** −0.016 

dS– Fop −0.555*** −0.252*** −0.506*** −0.297*** −0.107*** 0.269*** 

dS–ts/tv−ratio −0.505*** −0.114*** −0.442*** −0.181*** −0.136*** −0.373*** 

mRNA-level–Fop 0.398*** 0.530*** 0.553*** 0.281*** 0.020 0.085*** 

mRNA-level–ts/tv−ratio 0.299*** 0.248*** 0.299*** 0.296*** 0.095*** 0.076*** 

Fop–ts/tv−ratio 0.483*** 0.284*** 0.299*** 0.201*** 0.069*** −0.103*** 

 

(cont.) 

Correlation Human | GC Sim. +cost Sim. −cost Sim. +noise  

dN–dS 0.460*** 0.668*** −0.079 0.668*** 

dN–mRNA-level −0.173*** −0.682*** 0.053 −0.070 

dN–Fop −0.065*** −0.711*** 0.002 −0.140** 

dN–ts/tv−ratio −0.591*** −0.518*** −0.176*** −0.518*** 

dS–mRNA-level −0.059** −0.789*** −0.037 −0.100* 

dS–Fop 0.042** −0.817*** −0.038 −0.108* 

dS–ts/tv−ratio −0.293*** −0.423*** 0.238*** −0.423*** 

mRNA-level–Fop 0.051** 0.897*** 0 0.060 

mRNA-level–ts/tv−ratio 0.095*** 0.463*** 0.010 0.099* 

Fop–ts/tv−ratio 0.060*** 0.479*** 0.075 0.083 

* = P < 0.05; ** = P <  0.01; *** = P < 0.001; all significance levels after false-
discovery-rate correction for multiple testing.



Cell, Volume 134 

 15 Drummond and Wilke 

Table S2.  Optimal codons identified from tRNA gene copy numbers in mouse (Mus 
musculus) tabulated by Waterston et al. (Waterston et al., 2002)  Codons corresponding 
to the most-abundant tRNA species per family were designated optimal (*).  Cognate 
codons were assigned by assuming that each DNA-encoded anticodon was matched by 
its reverse complement, except for anticodons with 3′ adenine (ANN), which were 
assumed to be quantitatively modified to inosine (INN) and to prefer NNC codons 
rather than NNU . 

Amino 
acid 

Anti-
codon 

Cognate 
codon 

tRNA gene 
copy 

number 
Amino 

acid Anti-codon 
Cognate 
codon 

tRNA 
gene 
copy 

number 
A IGC GCC* 12 N GTT AAC* 11 
 TGC GCA 4  ITT AAC 0 
 CGC GCG 3 P IGG CCC* 5 
 GGC GCC 0  TGG CCA 4 

C GCA UGC* 50  CGG CCG 2 
 ICA UGC 0  GGG CCC 0 

D GTC GAC* 14 Q CTG CAG* 8 
 ITC GAC 0  TTG CAA 5 

E CTC GAG* 8 R ICG CGC* 6 
 TTC GAA* 8  TCG CGA 5 

F GAA UUC* 7  CCT AGG 5 
 IAA UUC 0  TCT AGA 5 

G GCC GGC* 12  CCG CGG 2 
 TCC GGA 7  GCG CGC 0 
 CCC GGG 2 S IGA UCC* 7 
 ICC GGC 0  GCT AGC* 7 

H GTG CAC* 9  CGA UCG 3 
 ITG CAC 0  TGA UCA 3 
I IAT AUC* 11  GGA UCC 0 
 TAT AUA 4  ICT AGC 0 
 GAT AUC 0 T IGT ACC* 8 

K CTT AAG* 9  CGT ACG 4 
 TTT AAA* 9  TGT ACA 4 

L CAG CUG* 8  GGT ACC 0 
 IAG CUC 5 V CAC GUG* 7 
 CAA UUG 4  IAC GUC 6 
 TAG CUA 3  TAC GUA 3 
 TAA UUA 2  GAC GUC 0 
 GAG CUC 0 W CCA UGG 8 

M CAT AUG 15 Y GTA UAC* 10 
     ITA UAC 0 
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Table S3.  Probabilities of a translation error for all 61 sense codons in the simulation 
(structure 699), along with optimal codon designations (*).  Probability of error was 
estimated by the fraction of 10,000 translation events yielding anything other than the 
encoded amino acid. Fold-differences in error frequency are computed relative to all 
synonymous codons (syn) or all other codons (all). 

Amino 
acid Codon Pr(error) 

Fold 
diff. 
(syn) 

Fold diff. 
(all) 

Amino 
acid Codon Pr(error) 

Fold 
diff. 

(syn)

Fold 
diff. 
(all)

A GCA 0.00714 5.0 5.5 N AAC* 0.00256 1.0 2.0 
 GCC 0.00738 5.2 5.7  AAU 0.01263 4.9 9.8 
 GCG 0.00721 5.1 5.6 P CCA* 0.00157 1.0 1.2 
 GCU* 0.00142 1.0 1.1  CCC 0.00704 4.5 5.5 

C UGC 0.01352 5.9 10.5  CCG 0.00731 4.7 5.7 
 UGU* 0.00229 1.0 1.8  CCU 0.00747 4.8 5.8 

D GAC* 0.00226 1.0 1.8 Q CAA* 0.00237 1.0 1.8 
 GAU 0.01265 5.6 9.8  CAG 0.01222 5.2 9.5 

E GAA* 0.00264 1.0 2.0 R AGA* 0.00212 1.0 1.6 
 GAG 0.01214 4.6 9.4  AGG 0.01143 5.4 8.9 

F UUC* 0.00232 1.0 1.8  CGA 0.00453 2.1 3.5 
 UUU 0.01259 5.4 9.8  CGC 0.00699 3.3 5.4 

G GGA 0.00687 4.9 5.3  CGG 0.00560 2.6 4.3 
 GGC 0.00711 5.1 5.5  CGU 0.00709 3.3 5.5 
 GGG 0.00700 5.0 5.4 S AGC 0.01246 8.9 9.7 
 GGU* 0.00139 1.0 1.1  AGU 0.01257 9.0 9.7 

H CAC* 0.00243 1.0 1.9  UCA 0.00687 4.9 5.3 
 CAU 0.01268 5.2 9.8  UCC* 0.00156 1.1 1.2 
I AUA 0.00981 5.7 7.6  UCG 0.00714 5.1 5.5 
 AUC 0.00205 1.2 1.6  UCU* 0.00140 1.0 1.1 
 AUU* 0.00172 1.0 1.3 T ACA 0.00705 5.5 5.5 

K AAA 0.01315 5.8 10.2  ACC* 0.00129 1.0 1.0 
 AAG* 0.00228 1.0 1.8  ACG 0.00718 5.6 5.6 

L CUA 0.00434 2.1 3.4  ACU 0.00138 1.1 1.1 
 CUC 0.00713 3.5 5.5 V GUA 0.00742 4.8 5.8 
 CUG 0.00483 2.4 3.7  GUC* 0.00155 1.0 1.2 
 CUU 0.00736 3.6 5.7  GUG 0.00765 4.9 5.9 
 UUA 0.00990 4.9 7.7  GUU* 0.00159 1.0 1.2 
 UUG* 0.00204 1.0 1.6 W UGG 0.01498 1.0 11.6 

M AUG 0.01601 1.0 12.4 Y UAC* 0.00255 1.0 2.0 
      UAU 0.01153 4.5 8.9 
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Table S4: Rank correlations between evolutionary rates and aggregate levels or patterns 
of expression. 

Organism 
Dependent 

variable 

Expression 
mean 

(arithmetic)

Expression 
mean 

(geometric)
Expression 

breadth 
Tissue 

specificity 

dN −0.246*** −0.384*** −0.357*** 0.399*** Fly dS −0.119*** −0.198*** −0.157*** 0.216*** 
dN −0.169*** −0.190*** −0.178*** 0.209*** Mouse dS −0.039** −0.043*** −0.016 0.020 
dN −0.126*** −0.163*** −0.224*** 0.235*** Human dS 0.018 −0.017 −0.127*** 0.149*** 
dN −0.135*** −0.173*** −0.209*** 0.221*** Human | GCi

a 
dS −0.029 −0.060** −0.084*** 0.108*** 

* = P < 0.05; ** = P <  0.01; *** = P < 0.001; all significance levels after false-
discovery-rate correction for multiple testing. 
aPartial correlations, controlling for intronic guanine and cytosine proportion. 
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