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Estimating a Structured Covariance Matrix From
Multilab Measurements in High-Throughput Biology

Alexander M. FRANKS, Gábor CSÁRDI, D. Allan DRUMMOND, and Edoardo M. AIROLDI

We consider the problem of quantifying the degree of coordination between transcription and translation, in yeast. Several studies have
reported a surprising lack of coordination over the years, in organisms as different as yeast and humans, using diverse technologies. However,
a close look at this literature suggests that the lack of reported correlation may not reflect the biology of regulation. These reports do not
control for between-study biases and structure in the measurement errors, ignore key aspects of how the data connect to the estimand, and
systematically underestimate the correlation as a consequence. Here, we design a careful meta-analysis of 27 yeast datasets, supported by a
multilevel model, full uncertainty quantification, a suite of sensitivity analyses, and novel theory, to produce a more accurate estimate of the
correlation between mRNA and protein levels—a proxy for coordination. From a statistical perspective, this problem motivates new theory
on the impact of noise, model misspecifications, and nonignorable missing data on estimates of the correlation between high-dimensional
responses. We find that the correlation between mRNA and protein levels is quite high under the studied conditions, in yeast, suggesting
that post-transcriptional regulation plays a less prominent role than previously thought.

KEY WORDS: High-dimensional inference; Inter-laboratory comparisons; Measurement error; Nonignorable missing data

1. INTRODUCTION

We consider the problem of estimating the degree of coordi-
nation between transcription and translation, in yeast. A credible
estimate would have two important substantive implications. It
would help assess the extent to which analyses that take mea-
sures of transcription as proxies for measures of translation, are
valid. A credible estimate would also help quantify the relative
roles of transcriptional versus post-transcriptional regulation.

Several studies have addressed this problem over the years,
in organisms as different as yeast and human, with diverse tech-
nologies (Gygi et al. 1999; Abruzzo et al. 2005; Castrillo et al.
2007; Ingolia et al. 2009; Vogel et al. 2010; Schwanhäusser et al.
2011). Typically, transcription is quantified in terms of the con-
centration of messenger RNA (mRNA), corresponding to differ-
ent genes, while translation is quantified in terms of the ratio of
protein abundance to mRNA. If rates of translation and degra-
dation did not vary by gene, then protein-mRNA ratios would
be constant, and mRNA-protein levels would be perfectly corre-
lated (de Sousa Abreu et al. 2009). Accordingly, the correlation
between the vectors of mRNA and protein concentrations has
been used as a proxy for the degree of post-transcriptional reg-
ulation. Published estimates of the correlation are low, mostly
between 0.3 and 0.6, and do not seem to increase with more
modern technologies. Thus, the consensus is that there is signif-
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icant regulation of protein levels after transcription, especially in
higher organisms and mammals. This finding is quite surprising.
The community agrees the extent to which mRNA and protein
levels correlate is still unclear (Vogel and Marcotte 2012).

A close look at this literature suggests that the lack of reported
correlation is not surprising after all. These studies are not based
on a careful design, nor they carry out statistical analyses care-
fully, and ignore key aspects of how the data connect to the
estimand. For instance, analyses are often limited to complete
cases, discarding mRNAs and proteins with missing measure-
ments. They ignore that missing measurements are more likely
to be taken on mRNAs and proteins that are rare in cell. Structure
in the variability of measurements, often referred to as batch ef-
fects (Leek et al. 2010), is not accounted for. Arguably, the low
reported correlations are more likely to be due to limitations
in the designs and analyses, rather than to limitations in the
technology, or to aspects of regulation.

Conceptually, we can decompose the correlation into
contributing components that should inform an appropriate
study design and analysis. Namely, the main components that
contribute to variation in the observed correlation between
mRNA and protein levels are: differences in strain, technology
and growth rate, the amount of alternative splicing, additional
variability structured according to experiments, replicated
measurements within an experiment, and actual biological
variation (Raser and O’Shea 2005; Wallace, Airoldi, and
Drummond 2013).

Here, we design an original meta-analysis of 27 yeast datasets,
supported by a multilevel model, full uncertainty quantification,
a suite of sensitivity analyses, and novel theory, to produce
a more accurate estimate of the correlation between mRNA
and protein levels. Briefly, the proposed design controls for
strain and reported growth rate, includes multiple technologies
for measuring mRNA and protein levels. A simple multilevel
model accounts for the structure in the meta variance-covariance
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matrix, and includes a nonignorable missing data mechanism
for missing measurements (Rubin 2004; Ibrahim et al. 2005;
Gelman and Hill 2006). A limited amount of splicing in yeast
(Parenteau et al. 2008) and other sources of variation contributes
to the residual error. The strategy for the meta-analysis is to first
fit a simple normal-normal multilevel model, in which tech-
nologies are assumed as exchangeable. While this model is
theoretically identifiable in the absence of missing data, or in
the presence of data missing completely at random, properties
of the inference under nonignorable missing data are uncertain.
We show empirically that inference achieves nominal frequen-
tist coverage for a number of key parameters in the presence of
nonignorable missing data, using posterior predictive metadata,
in Section 4.1, and that the model is robust to departures from
normality, in Section 4.2. In Section 4.3, we use this model to
estimate the correlation between mRNA and protein levels. We
then explore the impact of relaxing the exchangeable technolo-
gies assumption on the correlation estimates, in Section 4.4.

From a statistical perspective, this problem motivates new
theory on the impact of noise, model misspecifications, and
nonignorable missing data on estimates of the correlation, in
Section 3. These theoretical results are illustrated by the analy-
sis presented in Section 4.2. It is worthwhile noting that, while
standard theory exists that characterizes the impact of measure-
ment noise and model misspecifications on mean coefficients,
and in some cases variance coefficients, there is no theory that
characterizes the impact of such specifications on the covariance
or correlation between high-dimensional responses, for exam-

ple, mRNA and protein concentrations, which is the estimand
of interest in the problem we consider.

From a substantive perspective, we find that the correlation
between mRNA and protein levels is quite high, in yeast, sug-
gesting that post-translational regulation plays a less prominent
role than previously thought.

1.1 Data Collection and Exploratory Data Analysis

We gathered 16 datasets that measure mRNA expression and
11 that measure protein concentrations, mostly published, yield-
ing a total of 58 high-throughput measurements on 5308 genes
and their corresponding proteins in yeast. The measurements
were taken on yeast cultures using different technologies in-
cluding custom and commercial microarrays, high-throughput
sequencing, and mass spectrometry.

The goal of the analysis is to study the steady state correlation
of mRNA and protein levels. Thus, it is important to use data
that were collected under similar experimental conditions; from
haploid yeast S. cerevisiae growing exponentially in rich shaken
liquid medium with 2% glucose between 22◦C and 30◦C. Ad-
ditional sources of variation are treated as noise for the purpose
of the analysis.

Details of the datasets are summarized in Table 1. Through-
out the article we work with the natural logarithm of the raw
data, as this is approximately normally distributed. This is stan-
dard in mRNA expression and protein abundance studies (Eisen
et al. 1998).

Table 1. List of mRNA datasets (above the midline) and protein concentration datasets (below the midline)

ID Reference Technology (measurements) Missing

CAUS Causton et al. (2001) Commercial microarray (x5) 19–22%
DUD Dudley et al. (2002) Custom microarray (x4) 5%
GARC Garcı́a-Martı́nez, Aranda, and Pérez-Ortı́n (2004) Custom microarray 1%
HOLS Holstege et al. (1998) Commercial microarray 12%
ING1 Ingolia et al. (2009) RNA-Seq (mRNA rich) (x2) 9–10%
ING2 Ingolia lab, unpublished, 2010 RNA-Seq (rq) (x2) 4–5%
ING3 Ingolia lab, unpublished, 2010 RNA-Seq (ca) (x2) 6–8%
LIP1 Lipson et al. (2009) RNA-Seq (x6) 1%
LIP2 Lipson et al. (2009) Commercial microarray 4%
MAC MacKay et al. (2004) Custom microarray 28%
MIUR Miura et al. (2008) cPCR (x4) 26–29%
NGAL Nagalakshmi et al. (2008) RNA-Seq 22%
PELE Pelechano and Pérez-Ortı́n (2010) Custom microarray 14%
ROTH Roth et al. (1998) Commercial microarray (x2) 59–70%
VELC Velculescu et al. (1997) SAGE 58%
YASS Yassour et al. (2009) RNA-Seq (x4) 5%

FUTR Futcher et al. (1999) 2D gel 99%
GHAM Ghaemmaghami et al. (2003) Western blot 34%
GODO de Godoy et al. (2008) LC MS/MS 25%
GYGI Gygi et al. (1999) 2D gel 98%
LEE Lee et al. (2011) LC MS/MS (x3) 67–76%
LU Lu et al. (2007) LC MS/MS 83%
NGAR Nagaraj et al. (2012) LC MS/MS (x6) 31%
NEWM Newman et al. (2006) GFP 60%
PENG Peng et al. (2003) LC MS/MS 74%
THAK Thakur et al. (2011) LC MS/MS (x3) 84–85%
WASH Washburn, Wolters, and Yates (2001) LC MS/MS 77%

NOTES: If the dataset has multiple measurements, the number of replicates in each dataset is given after the technology name, in parentheses. “2D gel” stands for two-dimensional
gel electrophoresis, and “MS” for mass-spectrometry. The last column is the missingness rate out of the 5308 genes in our dataset.
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Figure 1. mRNA expression data (left panel) and protein concentrations data (right panel) are highly structured. The plots show naive, biased
Pearson correlation estimates between pairs of replicated measurements on the intersection of observed mRNAs/proteins; separately for replicates
within experiments (solid) and across experiments (dashed). The thin black line in each panel shows the naive correlations between mRNA
expression and protein replicates. The observed mRNA expression–protein correlations are comparable to the between-experiment correlations
for both mRNA expression and protein levels. The top labels indicate the mean pairwise correlation between and within experiments.

The datasets in Table 1 have features that, if unaccounted for,
are likely to result in poor estimates of the correlation of inter-
est. First, the measurements are inherently noisy. Both biolog-
ical and technical noise attenuate correlation estimates; we de-
fine attenuation as bias toward zero. Second, the measurements
are structured. We refer to an “experiment” to indicate a set of
replicated measurements, whether technical or biological, which
were obtained with a specific biotechnology and published in
a specific article (e.g., Ingolia et al. 2009; Lipson et al. 2009).
The data we collected can be grouped according to biotechnol-
ogy and experiment. As expected, the variability of the mRNA
expression values is larger between experiments than between
replicated measurements within an experiment (Figure 1). Inter-
estingly, the range of the observed mRNA–protein correlations
is almost the same as the between-experiment correlations, for
both mRNA and protein levels. Principal component analysis
of the replicates (see Figure B.2 in the Appendix) confirms that
experiment effects are large.

Third, a considerable portion of the data in any given experi-
ment is missing. On average, over 25% of the values are missing
in any replicated measurement, for either mRNAs or proteins,
with some experiments missing over 95% of the values. The
datasets with a very large number of measurements missing
may be of questionable value for estimating the mRNA–protein
correlation but they are included for completeness. These are
classic datasets that originally led to the conclusion that mRNA
and protein levels correlated poorly, and so their inclusion is
natural.

Notably, it is harder to obtain mRNA expression and pro-
tein concentration values for mRNA transcripts and proteins
that are rare in the cell. A quick analysis of replicated mea-
surements suggests that the fraction of missing values appears
to be inversely related to the average observed values of both
mRNA and protein concentrations. This analysis is illustrated
in Figure 2 and in Table B.1 in the Appendix.

Figure 2. Unavailable values are not missing at random. The bars show the average observed mRNA levels (left panel) and protein concentration
values (right panel), standardized, plotted as a function of the number of missing values for each mRNA (out of 38 total), or protein (out of 20
total). Bar widths are proportional to the number of genes (proteins) in each bin.
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We give some theoretical insights in Section 3 on how each of
these three effects attenuate the observed correlation, and also
perform an analysis of simulated data in Section 4.2.

1.2 Contributions of This Work

We estimate the degree of coordination between transcription
and translation, in yeast. To accomplish that, we have curated a
collection of 27 yeast datasets about mRNA and protein levels,
in Table 1. We developed an original meta-analysis strategy to
estimate the amount of coordination, which we quantify in terms
correlation between latent denoised representations of mRNA
and protein levels. This correlation is a parameter in a simple
multilevel model that accounts for measurement error struc-
ture due to experimental protocols, replicated measurements,
and technology biases (Kipnis 2003; Johnson et al. 2007). The
analysis involves Bayesian confidence intervals, a suite of sensi-
tivity analyses including an evaluation of frequentist coverage,
robustness of the estimates to departure from key assumptions,
such as normality and correct specifications of the covariance
structure, and the effects of technological bias on the estimates.
We also develop novel theory that provides analytical insights
into the results of the sensitivity analyses we perform. Namely,
we quantify the expected reduction in correlation as a function
of (1) noise in the data; (2) experiment effects and model mis-
specification; and (3) nonignorable missing data. This theory
extends Spearman’s correction for the attenuation of correlation
(Spearman 1904) between two quantities to a multivariate set-
ting while accounting for experiment effects. In particular, while
corrections for the effect of missing data on exploratory analyses
have been explored (Wiberg and Sundström 2009), we are the
first, to our knowledge, to discuss the estimation of correlation
from multiple measurements each with different nonignorable
missing data mechanisms.

2. METHODS

We posit a simple model to estimate a covariance matrix
between high-dimensional responses, in the presence of struc-
tured measurement errors and nonignorable missing data, and
we develop a Markov chain Monte Carlo (MCMC) algorithm
to perform inference. Models of this sort are well established in
statistical applications (see, e.g., Rubin and Little 2002; Johnson
et al. 2007). We chose a combination of simple specifications to
be able to develop novel theory for the estimated correlations,
in Section 3. In Section 4.3, this model is used to carry out an
original meta-analysis of the experiments listed in Table 1.

2.1 A Structured Covariance Model of High-Dimensional
Responses

While the model we detail below is generally applicable for
the estimation of a covariance matrix among multiple responses,
we specify the data-generating process for our goal of estimating
the amount of coordination between mRNA transcription and
protein translation. In this application, we consider two high-
dimensional responses, with approximately 5300 dimensions,
corresponding to mRNA expression and protein abundance in
yeast. Each response is measured multiple times in a number
of experiments, where each experiment consists of one or more
replicates. Let Xi,j denote the measurement for mRNA/protein

i in replicate j. Replicates, experiments, and response variables
form a three-layer hierarchy of nested groups. Specifically, we
have NL latent variables at the top of the hierarchy (two in this
article, representing mRNA and abundance), NE experiments
measuring one of the latent quantities, and NR total replicates
across experiments. To write down the model, we define two
functions that map replicates to the other two layers. The func-
tion l[j ] maps a replicate to the response type (mRNA expres-
sion or protein abundance) and the function k[j ] maps replicates
to experiments. These mappings are such that k[j1] = k[j2] im-
plies l[j1] = l[j2], that is, replicates of the same experiment
measure the same response.

The model has two components: an observation model
p(Ii,j |Xi,j ), which provides the probability of observing a value
for mRNA/protein i in replicate j, given the latent mRNA/protein
level, and a hierarchical model p(Xi,j | . . . ) for the latent
mRNA/protein levels themselves. We posit

Xi,j = Li,l[j ]Gk[j ] + Ei,k[j ] + Ri,j + νj (1)

Li ∼ NNL (0,�) (2)

Ei,k ∼ N (0, ξk) (3)

Ri,j ∼ N (0, θj ) (4)

p(Ii,j = 0|Xi,j = x) = 1

1 + exp
(− η0

k[j ] − η1
k[j ]Xi,j

) , (5)

where the random variables Li,l specify the latent mRNA ex-
pression and abundance, for mRNA and protein i = 1, . . . , N ,
and Li = [Li,1, . . . , Li,NL ]′. The random variables Ei,k capture
experiment effects for experiment k = 1, . . . , NE , and Ri,j are
measurement noise for replicate j = 1, . . . , NR . Effects be-
tween experiments are independent, cov(Ei1,k1 , Ei2,k2 ) = 0 if
k1 �= k2. Measurement noise is independent between replicates,
cov(Ri1,j1 , Ri2,j2 ) = 0 if j1 �= j2. The parameter νj reflects repli-
cate specific bias common to all mRNAs/proteins. The coeffi-
cient Gk is an experiment-specific scaling factor for the latent
expression and abundance. The indicator variable Ii,j denotes
whether the value for Xi,j was observed and accounts for non-
ignorable missing data as detailed in Section 2.1.2.

The estimand of interest, �, specifies the correlation matrix
of the response variables. For our application, NL = 2 and ψ1,2

represents the correlation between the true mRNA and protein
levels. The diagonal of � is fixed to one for identifiability.
The parameters ξk and θj specify the variances of the effects
for experiment k, and the measurement noise for replicate j,
respectively.

To write down the likelihood, let Xi = [Xi,1, . . . , Xi,NR ]′ de-
note all measurements (both observed and missing) across repli-
cates for mRNA/protein i, and let X = [X1, . . . ,XN ] denote
the N ×NR complete data matrix of all measurements. Then,
X ∼ N (ν, IN×N ⊗ �). Here the column covariance, � corre-
sponds to the between experiment covariance. Since we assume
independence between genes (but see Section 4.2), the row co-
variance is simply the N ×N identity matrix.

Similarly, define I as the binary observation matrix of di-
mension N ×NR , and define the vectors η0 = [η0

1, . . . , η
0
NE

],
η1 = [η1

1, . . . , η
1
NE

], and ν = [ν1, . . . , νNR ]. Then the complete
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data likelihood for the proposed model is

L(X, I|�, η0, η1, ν)

∝
N∏
i=1

[
|�|−1/2 exp

(
−1

2
(Xi − ν)′�−1(Xi − ν)

)]

× L(I|X, η0, η1), (6)

where

L(I|X, η0, η1)

=
N∏
i=1

NR∏
j=1

(
1

1 + exp
(− η0

k[j ] − η1
k[j ]Xi,j

)
)Ii,j

×
(

exp
(− η0

k[j ] − η1
k[j ]Xi,j

)
1 + exp(−η0

k[j ] − η1
k[j ]Xi,j )

)1−Ii,j
, (7)

and where � is a structured covariance matrix of size NR ×NR
detailed in Section 2.1.1.

Note that Table 1 lists a few experiments that contain only one
replicate. For these experiments, we simplify Equation (1) by
removing the random effect for the replicate, Ri,j . This ensures
that all the quantities remain identifiable.

2.1.1 Covariance Structure. The nested response-
experiment-replicate grouping leads to a structured covariance
matrix, cov X = �, for the complete data. Assuming that
replicates are ordered according to response type and exper-
iment (l[j ] and k[j ]) in X, � consists of NL large blocks
corresponding to the response variables; and each large block is
a block diagonal plus rank one matrix, with one block for each
experiment. Covariance matrices with this structure, illustrated
in Figure 3, are often referred to as “similarity matrices” (see,
e.g., McCullagh 2006). In our model, � is a function of �, ξk ,
θj , and Gk . The marginal variance of each observation is

σ 2
i,j = G2

k[j ] + ξk[j ] + θj . (8)

Two replicates j1 and j2 within the same experiment k =
k[j1] = k[j2] also have l = l[j1] = l[j2] and their covariance
isG2

k + ξk . The replicates are exchangeable within experiments
but not between experiments.

2.1.2 Observation Model. Figure 2 suggests that the frac-
tion of missing data is negatively correlated with the average
observed values for both mRNA expression and protein con-
centrations. This is evidence that the measurements are missing
not at random (MNAR) (Rubin 2004).

We follow a well-established approach to model this type
of missing data mechanism, by means of a generalized linear
model (Ibrahim et al. 2005). Equation (5) models the proba-
bility that measurement Xi,j is missing, p(Ii,j = 0), as a lo-
gistic function of the value of the measurement. The param-
eters of the missing data mechanism, η0

k and η1
k , are shared

by replicates within an experiment; they uniquely determine
the probability that measurements are observed, conditional on
Xi,j .

This observation model is flexible enough to include sharp
censoring at a certain mRNA/protein value or to capture very
little or no dependence of missingness on mRNA/protein levels.
Importantly, the observation model parameters vary by experi-
ments. See Figure B.1 in the Appendix for some examples on
how the observation model fits to various experiments.

2.1.3 Prior Specifications. To complete the model specifi-
cations, we place priors on �, ξk , θj , η0

k , and η1
k . Recall that

referenced works report correlation in the 0.3–0.6 range. In de-
veloping an independent meta-analysis, we use either flat, or
weakly informative, to produce estimates that are unaffected by
previous results that arguably depend on problematic assump-
tions and methods. For the parameters η0

k and η1
k of the logistic

observation model, we use a Cauchy prior with mean zero and
scale 2.5, after scaling the data (at each imputation step) to have
mean zero and standard deviation 1/2, as suggested by Gelman
et al. (2008). We assume flat priors on the scaling factors, Gk ,
and the measurement bias parameters νj . For the replicate and
experiment variances θj and ξk , we use independent conjugate
scaled inverse χ2 priors with 3 degrees of freedom and scale
1/5. This is equivalent to an Inv-Gamma(3/2, 3/10) prior.

Since the primary estimand of interest is the correlation matrix
�, the choice of prior is particularly important. One option is
to use the inverse Wishart prior, scaled to have unit variance.
The inverse Wishart prior is the standard conjugative prior for
covariance matrices, but it is quite restrictive. For instance, the
inverse Wishart specifies the same degrees of freedom for every
entry in the matrix. Crucially, with the inverse Wishart prior
higher variances are associated with higher correlations.

As such, using a scaled inverse Wishart distribution to spec-
ify a prior actually corresponds to an informative prior on the
correlations. To avoid this, we assume that the correlation and
variance are independent. This is consistent with the separation
strategy introduced by Barnard et al. (2000). This strategy in-
volves putting a flat prior (Unif[−1, 1]) on the correlation in the
proposed model. The coverage studies of Section 4.1 indicate
that the estimated correlation is not biased by this choice of prior.

2.2 Inference Via Markov Chain Monte Carlo

We fit the hierarchical model and the observation model
jointly using a Gibbs sampler. Algorithm 1 provides an overview
of the sampling strategy. A more detailed description of the in-
dividual steps follows.

MCMC inference via Gibbs sampling
repeat

1. Draw multivariate responses:
for i ∈ 1, . . . , N do

Draw Li from a conditional multivariate normal.

2. Draw covariance matrix, conditional on L.
3. Draw experiment level random variables:

for k ∈ 1, . . . , NE do
Draw Gk , ξk and Ei,k for all i via Bayesian linear
regression and normal and Inv-χ 2 draws.

4. Draw replicate level random variables:
for j ∈ 1, . . . , NR do

Draw νj , θj and Ri,j via Bayesian linear
regression and normal and Inv-χ 2 draws.

5. Impute missing data, see the text.
6. Draw observation model parameters:

for k ∈ 1, . . . , NE do
Draw η1

k and η0
k via Bayesian logistic regression

and normal draws.
until desired number of samples

Algorithm 1: The Gibbs sampler

Step 1. Since Li and Xi are multivariate normal, Li con-
ditional on the other parameters is also multivariate normal.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

hi
ca

go
 L

ib
ra

ry
] 

at
 2

0:
00

 2
2 

A
pr

il 
20

15
 



32 Journal of the American Statistical Association, March 2015

Figure 3. (a) Responses, experiments, and replicates form a nested group structure. (b) These groups define a “similarity matrix,” a covariance
matrix characterized by a block structure for var X = �. The σ 2

j marginal variances are given by Equation (8), εk = G2
k + ξk is the within

experiment covariance.Gk[jr ] is the scaling factor for the experiment of the replicate corresponding to row jr of the matrix,Gk[jc] is the same for
column jc.

Specifically,

(Li |Xi , Gk, ξk, θj , νj )

∼ NNL

(
cov(Xi ,Li)�−1(Xi − ν),�

− cov(Xi ,Li)�−1 cov(Xi ,Li)′
)
, (9)

and cov(Xi ,Li) can be easily calculated from Equation (1) and
the parameters Gk , ξk , θj .

Step 2. Given Li , we then draw � using a
Metropolis–Hastings random walk sampler. To sample the cor-
relation, we use a truncated normal proposal, centered on the
current value. Barnard, McCulloch, and Meng (2000) suggested
setting the variance of the proposal distribution to a value in-
versely proportional to the number of measurements; after tun-
ing, we set it to 1/(10N ). When sampling from a bivariate
covariance matrix, the truncation points for the proposal are
simply −1 and +1, and the general formula is given by Barnard,
McCulloch, and Meng (2000).

Step 3. The random effects and the variance parameters are
drawn using Bayesian linear regression. First, for each experi-
ment k, we draw Gk , ξk , and Ei,k . Notice that Xi,j − Ri,j − νj
is the same for all j replicates that belong to the same exper-
iment k. So, we regress Xi,j − Ri,j − νj on Li,l[j ]Gk[j ] for an
arbitrary j for which k[j ] = k holds and for all i ∈ 1, . . . , N .
For the conjugate scaled Inv-χ2 prior the posterior of ξk is also
scaled Inv-χ2. Gk is drawn from a normal, see Gelman et al.
(2003, sec. 14.2) for details. Ei,k correspond to the residuals of
this regression.

Step 4. Similarly, we draw νj , θj , andRi,j for each replicate j,
by regressing Xi,j on Li,l[j ]Gk[j ] + Ei,k[j ], i ∈ 1, . . . , N . νj are
drawn from a normal, θj are drawn from a scaled Inv-χ2, and
the residuals of the regression correspond to Ri,j . Again, this is
according to the textbooks, see Gelman et al. (2003, sec. 14.2).

Step 5. Given these parameters, we impute the missing data.
The conditional density for a missing measurement, i, in repli-
cate j and experiment k[j ] is proportional to the product of the
logistic CDF and a normal density. That is,

p
(
X

missing
i,j

∣∣Li,l[j ], Ei,k[j ], η
0
k[j ], η

1
k[j ], θj

)
∝ exp

(
− (Xi,j − (Li,l[j ] + Ei,k[j ] + νj ))2

2θj

)

× 1

1 + exp
(− η0

k[j ] − η1
k[j ]Xi,j

) . (10)

While this density does not correspond to a simple con-
ditional draw, it can be approximated by a normal. For low
missingness probabilities, or censoring that occurs far out in
the tails, the density is very nearly normal. For more ex-
treme censoring, it is closer to the truncated normal density.
Since we do not observe sharp missingness patterns, typically
the observed data distribution is close to normal. We use a
Metropolis–Hastings independence sampler with a normal pro-
posal centered at the mode of the PDF and variance equal to the
Hessian at the mode. We get over 90% acceptance using this
approach.
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Step 6. The parameters of the observation model are drawn
from a normal, after Bayesian logistic regression on the missing
and observed values to get the means and variances (Gelman
et al. 2008).

3. THEORY

In Section 2.1, we developed a simple high-dimensional ran-
dom effects model for the latent measurement, with a missing
data mechanism specified through a logistic regression. While
standard theory exists that explores identifiability and the effects
of noise, structured errors, and nonignorable missing data on es-
timates of the regression coefficients of models of this sort (see,
e.g., Wang, Carroll, and Liang 1996), to the best of our knowl-
edge, no theory exists that explores the effects on estimates of
the correlation. In this section, we establish a few novel theo-
retical results in these directions. They provide insights into the
results of Section 4.

We state mild conditions under which the parameters of our
model are expected to be identifiable, in Section 3.1. We then
demonstrate three ways in which an analysis that disregards
key aspects of the data leads to attenuated estimates of the
correlation, ψ1,2. In Section 3.2, we specify, in the context of
our model, the known result that noise attenuates correlation.
In Section 3.3, we go further, proving that it is not enough to
simply incorporate noise into the model—if we do not model
the correlation structure of the noise between replicates, we still
underestimate correlation. Finally, in Section 3.4, we state a
condition under which ignoring missing data also coincides with
negatively biased estimates of ψ1,2. Below, we state and discuss
the main results. The proofs are provided in the Appendix.

Ultimately, all three results suggest that any analysis that ig-
nores measurement error, covariance structure, or missing data
will typically understate the magnitude of linear dependence
between the response variables. Since all of the biases are in
the same direction, the errors do not cancel out. These results
are consistent with the relatively moderate correlations reported
in previous analyses, none of which account for these three
features. As such, these theoretical insights further support our
finding in Section 4.3 that the true correlation between mRNA
expression and protein abundance is larger than previously re-
ported.

3.1 Identifiability

Lee (2007, sec. 2.2.2) stated the conditions under which
Gaussian random effects models (without missing data) are
identifiable. For instance, a sufficient condition is that we fix
diag(�) = 1. According to this condition, the random effect
portion of the model proposed in Section 2.1 is identifiable, up
to a sign change, for all Li,l[j ] and Gk[j ], since our model con-
tains a single response variable for both mRNA expression and
abundance levels.

The situation is more complicated for the observed data model
because of the nonignorable missing data mechanism. Simula-
tion results in Section 4.1, obtained with parameters specified in
Table 6, show near nominal frequentist coverage of the Bayesian
posterior intervals obtained using our MCMC inference strategy.
These empirical results suggest that identifiability is not an issue
whenever measurements are missing according to Equation (5).

3.2 Attenuation Due to Noise

In this section, we state how the correlation between any two
measured responses is smaller in magnitude than the true corre-
lation between the responses, as long as the measurement noise
is nonnegligible. While this general result has long been estab-
lished (Spearman 1904), we identify the specific parameters in
the proposed model, which govern the degree of attenuation.
Specifically, the amount of attenuation depends on the scaling
factors,Gk , as well as the replicate and experiment noise, θk and
ξk .

Theorem 1. Consider two observed replicates, X1, X2, from
two different experiments, measuring different response vari-
ables. For simplicity, let l[j ] = j and k[j ] = j , so that for in-
stance, Xi,1 = Li,1G1 + Ei,1 + Ri,1 + ν1. As specified in Sec-
tion 2.1, we assume without loss of generality that var(Li) =
ψi,i = 1. Given ξk > 0 and θk > 0, for k = 1, 2;

cor(X1, X2) = ψ1,2√
1 + (ξ1 + θ1)/G2

1

√
1 + (ξ2 + θ2)/G2

2

< ψ1,2

holds for ψ1,2 > 0.

3.3 Attenuation Due to Model Misspecification

In this section, we show that even if we account for noise
by incorporating data from multiple experiments, if we do not
account for the presence of structured noise within experiments,
we still underestimate correlation. We prove this for a simplified
case, where our model parameters are assumed to be homoge-
nous across responses, experiments, and replicates.

We consider a model, M, of the form as in Equations (1)–(4),
with two response variables (NL = 2), two experiments in each
response (NE = 4), and n/2 replicates for each experiment,
(NR = 2n replicates in total):

M = (�, [Gk], [ξk], [θj ]), k = 1, . . . , 4 and j = 1, . . . , 2n.

(11)

We assume that the parameters are homogenous across response
variables, experiments, and replicates: ξ = ξk ≥ 0 and θ = θj >

0 for all k and j, and also assume G = Gk for all k.
Let M̃ be another model, again, of the form of Equations

(1)–(4), but without an experiment-specific random effect:

M̃ = (�̃, [G̃k], [ξ̃k = 0], [θ̃j ]). (12)

As above, we assume that θ̃ = θ̃j > 0 and G̃ = G̃k = 1 for all j
and k. Aside from having no experiment-specific random effect,
the two models are identical. That is, M̃ has the same structure,
ÑL = NL = 2, ÑR = NR = 2n.

Theorem 2. Consider data generated by model M. Let ψ̃PM
1,2

denote the posterior mean estimator of ψ1,2 under the misspec-
ified model, M̃. The posterior mean asymptotically underes-
timates the true correlation as N, the number of mRNAs and
proteins goes to infinity. That is,

lim
N→∞

ψ̃PM
1,2 ≤ ψ1,2, (13)

with equality only if ξ = 0.
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3.4 Attenuation Due to Missing Data

In this section, we explore the implications of neglecting to
model a nonignorable missing data mechanism. Since correla-
tion cannot be computed with incomplete pairs of observations,
a complete case analysis by definition ignores all mRNAs and
proteins for which either value in the pair is missing. We con-
sider a simplified complete case analysis, with a missingness
mechanism on only one of the random variables, which induces
missingness in the other. The result below states that when the
missingness mechanism generates an observed data distribution
that has smaller variance than the complete data distribution, the
complete case analysis (on observed pairs) leads to an underes-
timate of the true correlation.

This condition is generally consistent with the missing data
mechanism we posit in Equation (5). That is, with a logistic
missingness mechanism, the variance of the observed data is
smaller than that of the complete data. As such, this result sug-
gests that previous approaches that ignore the missing values for
mRNA expression or protein abundance (complete case analy-
ses) generally underestimate the correlation.

Theorem 3. Let (X, Y ) be a bivariate normal random vari-
able. Consider a missingness mechanism on X and denote the
observed data, ignoring all censored observations,Xobs. Further,
assume the missingness mechanism is such that var(Xobs) <
var(X). In a complete-case analysis, the missingness mecha-
nism on X also induces a stochastic censoring on Y , and only
Y obs is observed. If cor(X, Y ) > 0, then

cor(Xobs, Y obs) < cor(X, Y ). (14)

4. RESULTS

We evaluate our methodology on synthetic and real data. In
Section 4.1, we show that the Bayesian confidence intervals
have good frequentist coverage, especially for the parameters
of interest. In Section 4.2, we show that the proposed model
is fairly robust to departures from normality of the log-mRNA
or log protein abundance levels. We also empirically show that
the basic structure of the model is necessary, consistent with
theoretical results in Section 3. In Section 4.3, we present the
results of the meta-analysis on the datasets listed in Table 1
and compare our results to previous estimates of the correlation
between mRNA expression and protein correlation in yeast. In
Section 4.4, we incorporate technology information into the
model, and check the sensitivity of the estimated correlation to
different assumptions about the magnitude of technology bias.

4.1 Frequentist Coverage

We set out to evaluate frequentist coverage of the Bayesian
intervals under realistic simulated datasets. We considered three
scenarios for the true correlation, ψ1,2 = 0.5, 0.8, and 0.9.
Each scenario consists of 27 simulated experiments, 11 mea-
suring gene expression, and 16 measuring protein abundance,
each with a number of replicated measurement matching a
real dataset in Table 1, and each measurement with 5300
dimensions—corresponding to distinct genes and proteins. The
remaining parameters (ηk,Gk, ξk, θ j , for all j, k) were set to
the posterior means reported in Table 6, which were obtained

Table 2. Frequentist coverage of 50% (top row) and 95% (bottom
row) Bayesian credible intervals, for various parameters

Coverage for parameters

True ψ1,2 Confidence ψ1,2 ξk θj Gk νj η1
k η0

k

ψ1,2 = 0.5 50% 43% 51% 39% 49% 40% 56% 54%
95% 92% 95% 82% 94% 86% 96% 96%

ψ1,2 = 0.8 50% 43% 50% 39% 45% 41% 55% 54%
95% 94% 95% 82% 92% 83% 96% 96%

ψ1,2 = 0.9 50% 49% 50% 40% 46% 39% 54% 54%
95% 98% 95% 82% 93% 84% 96% 97%

NOTE: Datasets were generated with three true correlation levels: 0.5, 0.8, 0.9.

when fitting the model to the real data, to generate realistic data.
Using these parameter values, we then simulated 100 replicated
data collections for each correlation scenario.

Table 2 reports the frequentist coverage of the 50% and 95%
Bayesian posterior intervals for the correlationψ1,2 and the other
model parameters. For each of the three correlation scenarios
(ψ1,2 = 0.5, 0.8, and 0.9), we report the fraction of times the
posterior interval covers the true correlation. For ξk , η0

k , η
1
k , and

Gk , we report the average coverage, over the NE experiment
specific parameters. For νj and θj , we report the coverage av-
eraged over all NR replicates in the dataset. The coverage is
excellent for most parameters, especially the main parameter of
interest, ψ1,2, and the experiment effect variances ξk .

4.2 Robustness to Misspecification

In this section, we test the robustness of our model to de-
partures from normality. Since it is not possible to observe the
complete data, it is difficult to assess the left tail behavior of the
complete data distribution for some datasets. To test how well
our model performs for nonnormal distributions with skew and
heavier tails, we generate the mRNA expression and protein lev-
els, Li,l , using the asymmetric Laplace distribution. A standard
multivariate asymmetric Laplace has the representation

Y = mX +X1/2Z, (15)

where Z ∼ NNL (0, �) and X is exponentially distributed with
mean one (Kozubowski and Podgorski 2000). The asymmetric
Laplace distribution is a continuous mixture of normals with
exponentially distributed variance. The parameter m induces
skewness. Figure 4 illustrates the univariate and bivariate asym-
metric Laplace distributions for various values of the m skew-
ness parameter.

We ran our algorithm on simulated data at three levels of cor-
relation (0.5, 0.8, and 0.9) and varying skewness in the mRNA
expression and protein levels. We again fixed the parameters
to match those inferred from the true data (in Table 6) but this
time generating Li from an asymmetric Laplace (Equation (15))
instead of the bivariate normal (Equation (2)). Table 3 shows
the inferred correlation for data generated using the multivari-
ate asymmetric Laplace. While the model, as expected, gives
biased correlation estimates for nonnormal data, the bias is very
small, even for very skewed and/or peaked data distributions.

Not only is the model robust to misspecification, but also,
simpler models fail to give good estimates for at least some
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Figure 4. (a) Examples for asymmetric Laplace distributions for various shape parameters, the means of the distribution are matched to zero.
(b) Examples for bivariate asymmetric Laplace distributions with ψ1,2 = 0.8 and various m = [m1,m2] shape parameters.

of the parameters. We conducted four kinds of experiments on
synthetic data, the results of which are summarized in Table 4.
All four experiments we tested have three different true ψ1,2

values: 0.5, 0.8, and 0.9, with 10 runs for each of these values.
All experiments used 5000 mRNAs and proteins.

1. First, we show that modeling noise is important because
noise attenuates correlation. Ignoring noise results in a
downward bias in the inferred correlation. See Theorem
1. We generated noisy bivariate normal data with unit
variance, one replicate for mRNA and one for protein
levels, for 5000 mRNAs/proteins, with true correlations
0.5, 0.8, and 0.9. The noise level was ξ + θ = 0.8. Then
we ignored the noise in our naive inference, that is, we
calculated the observed correlation of the noisy bivariate
normal data.

2. Second, we show that ignoring the structure of the noise
leads to attenuated correlation estimates. We use 16
mRNA expression and 16 protein replicates equally di-
vided in four experiments for both. We generate noisy
multivariate Normal data with this structure, with constant
noise levels ξk[j ] = 0.6 (experiment effects) and θj = 0.2
(replicate effects). The Gl[j ] scaling parameter was one.
Then we run the inference procedure by ignoring the
experiment random effects, that is, setting ξk = 0. See
Theorem 2.

Table 3. Robustness of the model to departures from normality

True
Asymmetric Laplace data, with skewness parameters

m = [m1, m2]

correlation [0,0] [0,-1] [0,1] [1,-1] [1,1] [-1,-2] [1,2]

ψ1,2 = 0.5 0.49 0.45 0.55 0.48 0.47 0.46 0.50
ψ1,2 = 0.8 0.79 0.79 0.81 0.80 0.78 0.78 0.80
ψ1,2 = 0.9 0.90 0.90 0.91 0.90 0.89 0.90 0.89

NOTES: The table shows inferred posterior mean correlations for datasets with multi-
variate asymmetric Laplace distributions, with varying correlation and skewness, fit using
the normal model, Equation (1). Standard deviations are 0.01 or less for all values.

3. Third, if part of the data is nonignorably missing, then the
correlation estimates are attenuated. We use 16 mRNA
expression and 16 protein replicates equally divided in
four experiments for both. We generate noisy multivariate
Normal data with this structure, with constant noise levels
ξk[j ] = 0.6 (experiment effects) and θj = 0.2 (replicate
effects). The Gl[j ] scaling parameter was one. The pa-
rameters of the observation model were set arbitrarily in
a way to get about 1000 completely observed mRNAs
and proteins. In the inference, we ignore the noncomplete
cases, and only use the (about 1000) completely observed
mRNAs and proteins. See Theorem 3.

4. Finally, we show that imputing the missing data, but using
a simpler, “missing at random” (MAR ) observation model
fails to estimate correlation correctly. The synthetic data
contained two experiments for both mRNA expression and
protein levels, and two replicates for each experiments.
The noise levels were set to ξk[j ] = 0.6 and θj = 0.2, the
parameters of the observation model were tuned to obtain
about 1000 completely observed mRNAs and proteins.
The missing data were then imputed by fitting the model
using an MAR assumption instead of Equation (5). We find
that using more experiments and/or more replicates tends
to correct the bias in the inferred correlation. When the
correlation is high, the conditional variance of a missing
value, given all other observed values for the same mRNA

Table 4. Features of the data that attenuate correlation: noise, noise
structure, missing data, and nonrandomly missing data

3a. Missing 3b. Nonrandomly
1. Noise 2. Structure data missing data

ψ1,2 ψ̂1,2 ψ̂1,2 ψ̂1,2 ψ̂1,2

0.5 0.32 0.45 0.32 (± 0.07) 0.45 (± 0.02)
0.8 0.50 0.71 0.65 (± 0.02) 0.77 (± 0.03)
0.9 0.56 0.80 0.81 (± 0.03) 0.88 (± 0.02)

NOTES: See text for the complete description. Standard deviations are 0.01 or less,
unless shown otherwise.
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or protein, will be small. With many good observed “sur-
rogate measurements,” the results are somewhat robust to
MAR assumptions.

What about correlation between observations? In this re-
search, we assume that the measurements on each gene are
independent observations with between replicate covariance,
�. We consider correlation between genes in the experiment
effects. Certain functionally related genes may in fact vary to-
gether across experiments in which the data are actually obtained
in some condition, which is close to, but not exactly, the one
defined. Let E be the N ×NE random matrix of experiment-
specific random effects. We can augment the model to incorpo-
rate “between gene” row correlation, �, across the experiments:

E ∼ N (0,� ⊗ ξ ), (16)

where ξ is the diagonal matrix of experiment specific variances.
We evaluate the effect of nonidentity row correlation, �, in
simulation. We consider simulations involving three different
correlation structures between genes to evaluate how this influ-
ences the inference of latent mRNA–protein correlation at three
different ψ1,2 levels: 0.5, 0.8, and 0.9. In the first two cases,
we assume that the genes have a block correlation structure and
that within blocks the genes are correlated at level 0.9. In two
different simulations, we block the genes into 10 groups and
100 blocks of roughly equal size. In the third simulation, we
generate data with the gene correlation structure estimated from
an independent yeast dataset under multiple conditions (Brem
and Kruglyak 2005).

Row-wise correlation essentially decreases the effective sam-
ple size, leading to overconfidence in the inference (Efron 2009).
Table 5 shows the 95% interval of the sampling distribution as
well as the coverage of the 95% credible interval. As expected,
there is significant loss of coverage, but the model estimates are
essentially unbiased and the error is small. Thus, the substantive
conclusions on the data in Table 1 are not expected to change
much in the presence of row-wise correlation in the noise.

Finally, we test how robust our model is to misspecification
of the missingness mechanism. In particular, we assume a rather
simple logistic form for the missingness of both mRNA and pro-
tein levels. There is evidence of more complicated missingness
mechanisms, especially in studies using LC MS/MS to measure

Table 5. The 95% interval of the sampling distribution of the
posterior mean when experiment noise is correlated between genes

2.5% Mean 97.5% Coverage

ψ = 0.5, 10 blocks 0.46 0.50 0.52 0.81
ψ = 0.5, 100 blocks 0.47 0.50 0.52 0.91
ψ = 0.5, Brem et al. 0.48 0.50 0.52 0.90
ψ = 0.8, 10 blocks 0.77 0.79 0.81 0.59
ψ = 0.8, 100 blocks 0.79 0.80 0.81 0.89
ψ = 0.8, Brem et al. 0.78 0.80 0.82 0.74
ψ = 0.9, 10 blocks 0.86 0.89 0.91 0.28
ψ = 0.9, 100 blocks 0.89 0.90 0.91 0.76
ψ = 0.9, Brem et al. 0.88 0.90 0.91 0.60

NOTES: The results show that the estimate of ψ1,2 is essentially unbiased but the
variation increases as the degree of between gene correlation increases. The fourth column
shows the coverage of the 95% credible interval. While there is significant undercoverage,
the error is small.

Table 6. List of inferred posterior means for mRNA expression
(above the midline) and protein concentration (below the midline) for

every experiment

ξ � G η0 η1

abund.degodoy.1 — 1.86 3.52 −0.74 11.25
abund.futcher.1 — 6.80 4.62 −2.43 7.75
abund.ghaem.1 — 1.41 1.68 −1.02 6.06
abund.gygi.1 — 5.49 3.53 −2.33 4.68
abund.lee.1 1.68 0.81 4.10 −1.23 8.72
abund.lee.2 1.68 0.79 4.10 −1.23 8.72
abund.lee.3 1.68 0.94 4.10 −1.23 8.72
abund.lu.1 — 3.01 1.35 −0.59 5.82
abund.nagaraj.1 3.53 0.16 3.22 −2.04 21.00
abund.nagaraj.2 3.53 0.26 3.22 −2.04 21.00
abund.nagaraj.3 3.53 0.13 3.22 −2.04 21.00
abund.nagaraj.4 3.53 0.21 3.22 −2.04 21.00
abund.nagaraj.5 3.53 0.17 3.22 −2.04 21.00
abund.nagaraj.6 3.53 0.21 3.22 −2.04 21.00
abund.newman.1 — 2.03 1.93 −5.25 21.12
abund.peng.1 — 1.30 2.10 −2.26 −13.80
abund.thakur.1 4.99 0.60 5.72 −1.44 7.51
abund.thakur.2 4.99 0.30 5.72 −1.44 7.51
abund.thakur.3 4.99 0.33 5.72 −1.44 7.51
abund.washburn.1 — 6.57 2.82 −3.44 −23.24
expr.causton.acida 0.40 0.09 1.40 −3.09 12.41
expr.causton.acidb 0.40 0.13 1.40 −3.09 12.41
expr.causton.nacl 0.40 0.58 1.40 −3.09 12.41
expr.causton.peroxidea 0.40 0.05 1.40 −3.09 12.41
expr.causton.peroxideb 0.40 0.03 1.40 −3.09 12.41
expr.dudley.3a 0.85 0.53 0.84 −3.96 −13.55
expr.dudley.3b 0.85 0.21 0.84 −3.96 −13.55
expr.dudley.3c 0.85 0.29 0.84 −3.96 −13.55
expr.dudley.3d 0.85 0.37 0.84 −3.96 −13.55
expr.garcia.1 — 0.87 1.03 −1.08 1.05
expr.holstege.1 — 0.27 1.46 −1.60 −3.92
expr.ingolia1.1 0.46 0.04 1.41 −0.52 −0.45
expr.ingolia1.2 0.46 0.02 1.41 −0.52 −0.45
expr.ingolia2.1 0.47 0.05 1.43 −1.16 0.32
expr.ingolia2.2 0.47 0.01 1.43 −1.16 0.32
expr.ingolia3.1 0.33 0.04 1.56 −1.38 1.18
expr.ingolia3.2 0.33 0.02 1.56 −1.38 1.18
expr.lipson.rs10 0.79 0.01 1.35 −2.34 −4.58
expr.lipson.rs11 0.79 0.01 1.35 −2.34 −4.58
expr.lipson.rs12 0.79 0.01 1.35 −2.34 −4.58
expr.lipson.rs7 0.79 0.01 1.35 −2.34 −4.58
expr.lipson.rs8 0.79 0.01 1.35 −2.34 −4.58
expr.lipson.rs9 0.79 0.01 1.35 −2.34 −4.58
expr.lipson2.ma — 0.58 1.13 −0.65 0.42
expr.mackay.1 — 2.18 1.22 −0.20 −0.48
expr.miura.1 3.81 0.25 1.21 −1.27 −2.53
expr.miura.2 3.81 0.01 1.21 −1.27 −2.53
expr.miura.3 3.81 0.03 1.21 −1.27 −2.53
expr.miura.4 3.81 0.06 1.21 −1.27 −2.53
expr.nagalakshmi.1 — 0.50 1.30 −0.80 0.87
expr.pelechano.1 — 0.76 0.90 −1.61 −2.23
expr.roth.a 1.06 0.22 1.56 −3.46 −8.11
expr.roth.alpha 1.06 0.03 1.56 −3.46 −8.11
expr.velc.1 — 1.16 0.94 −20.04 −2.43
expr.yassour.ypd01 0.37 0.06 1.36 −1.24 1.69
expr.yassour.ypd02 0.37 0.08 1.36 −1.24 1.69
expr.yassour.ypd151 0.37 0.02 1.36 −1.24 1.69
expr.yassour.ypd152 0.37 0.04 1.36 −1.24 1.69

NOTES: The total variance can be found using Equation (8). These parameter values
are also used to generate the simulated data in Sections 4.1 and 4.2. Refer to Table 1 for
details about the individual datasets.
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protein abundance. Here, a two-stage missingness mechanism,
capturing both informative and noninformative censoring may
be more appropriate (Karpievitch et al. 2009). To account for
a possible misspecification of this type, we generate data as-
suming that every protein is missing with a 20% probability,
independent of its abundance in addition to the logistic censor-
ing specified in Equation (5). The data were generated in a way
such that the total fraction of missingness matched the true data.
We generate data at three levels of true correlation (0.5, 0.8,
and 0.9) and estimate this correlation using the one-level infor-
mative missingness model. There is no bias in the estimates,
even though the missing data mechanism is slightly misspec-
ified (0.50 ± .02, 0.80 ± .01, 0.9 ± .006). Since the marginal
probability of missingness can be well approximated by our
two-parameter observation model, the procedure is robust to
more complex mechanisms.

4.3 Quantifying the Transcriptional Control of Protein
Production

The main focus of this research is to identify the underlying
true correlation between mRNA expression and protein abun-
dance in exponentially growing yeast at steady state. Thus, we
fit our model on the data listed in Table 1. When fitting the
model on this data, we initialize our chains using standard soft-
ware (Rosseel 2012) to find the EM solution, assuming data
missing at random (Honaker, King, and Blackwell 2011), and
use this as a starting point for our Gibbs sampler. To save disk
space we save every 50th sample, and use over 5000 samples
to generate posterior estimates. We checked the convergence of
the MCMC simulation for the ψ1,2 samples, using two MCMC
chains and the R̂ statistics of Gelman and Rubin (1992). In our
real data fits, R̂ was close to 1 (less than 1.01), indicating very
good convergence. The effective sample size for the inferred
correlation, ψ1,2, is 1427. The average effective sample size for
the experiment noise within mRNA expression experiments is
3368 and for protein expression experiments is 1609.

After accounting for the measurement structure, biological
and technical noise, and missing data, we estimate the true poste-
rior mean correlation to be 0.82 (± 0.01). This estimate is signifi-
cantly larger than almost all previous estimates (Gygi et al. 1999;
Ingolia et al. 2009) or estimates derived from naive complete-
case analyses between single measurements (Figure 5(a)).

Some of our datasets have a very large number of measure-
ments missing. To check that including them does not bias our
results, we also fitted the model with excluding experiments
with (1) more than 80% and (2) more than 60% of missingness.
In both cases the inferred ψ1,2 value was 0.83 ± 0.01, compa-
rable to the result obtained on the full dataset, 0.82 ± 0.01, in
fact slightly higher.

These results have implications for our understanding of the
role of post-transcriptional regulation in yeast at steady state.
In particular, they suggest that this type of regulation is not
as pervasive as previously thought. Additionally, the data and
our results suggest that, using the current technologies, yeast
mRNA expression levels are not much worse for predicting
protein abundance values in a given experiment than another
protein abundance measurement from another lab. This is im-
portant because measuring mRNA expression levels is simpler
and cheaper than measuring protein abundances. Thus, mRNA

levels may in fact be a reasonable proxy for protein abundance,
at least in steady state. A list of all experiment-specific param-
eters is given in Table 6. The parameters, η, reflect the inferred
missingness pattern by experiment, and the noise parameters ξ

and θ reflect how much each experiment and replicate deviate
from the inferred true gene expression or protein levels.

4.4 Assessing the Impact of Different Measurement
Technologies

In our initial analysis, we assumed that for both mRNA ex-
pression and protein levels, all of the experiment level variables,
Ei,k , are exchangeable. However, in reality there is further dis-
tinguishing information, namely, the technology that is used by
each lab. In the literature, in addition to lab level effects, there
is evidence of different systematic biases in the technologies
(Yuen et al. 2002; Wang, Gerstein, and Snyder 2009; Roberts
et al. 2011). Incorporating these effects implies that experi-
ments are only exchangeable if they are conducted using the
same technology.

By introducing technology-specific variables into the model,
we can assess how sensitive the estimate of � is to a model in-
corporating technology. For this analysis, we assume that each
technology, t, has some bias, Tt , which is normally distributed
with a technology-specific variance. However, as noted by Lars-
son, Tian, and Sonenberg (2013), the extent of technology spe-
cific bias and variation is not completely understood. As such, in
our model, the technology specific biases have unknown vari-
ance terms that are impossible to infer without external data
or prior knowledge. Thus, we perform a sensitivity analysis to
check how our inferred correlation changes with different as-
sumptions about this bias. We amend our model to incorporate
technology information as follows:

Xi,j = Ti,t[j ]Gk[j ] + Ei,k[j ] + Ri,j + νj,l[j ] (17)

Ti,t[j ] ∼ N (Li,l[j ], τl[j ]/Wt[j ]), (18)

with the rest of the model as defined in Equations (2)–(5). Here,
t[j] indexes a particular technology used for measuring repli-
cate j. Technologies and experiments form nested groups. All
replicates in a given experiment were performed using the same
technology. Each technology is only used to measure either
mRNA or protein levels. As before, Ei,k and Ri,j represent ex-
periment and replicate specific effects.
Wt is a technology-specific weight that can be fixed a priori

or drawn from a distribution. The measured data alone cannot
inform us about which technologies give more biased estimates.
Accordingly, we fit our model, in separate runs, using different
prechosen sets of weights, W, to explore the sensitivity of our
results to possible biases in technology.

We consider three technologies for measuring mRNA expres-
sion (custom microarray, commercial microarray, and RNA-
Seq) and two technologies for measuring protein abundance
(two-dimensional gel electrophoresis and mass spectrometry).
For each technology, we assumeWt[j ] is iid uniform over the set
{1, 2, 5}. The values 1, 2, and 5 are arbitrary but representative of
possible moderate and large technology-specific biases. Under
this assumption, the heavily weighted technology (Wt = 5) has
bias with average magnitude that are

√
5 times smaller than the

technologies assigned weight 1. Figure 5(b) shows the posterior
mean correlation mixed over all combinations of weights. The
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Figure 5. (a) mRNA expression–protein correlation estimates. The lines with filled and empty circles show all naive pairwise correlation
estimates, using mRNAs measured in both datasets only, and the posterior distribution for the correlation, inferred via our structured covariance
model, respectively. Dashed vertical lines correspond to mean values. The correlation of the (naive) average protein and mRNA expression
levels over measurements is also shown. (b) Posterior distribution of the correlation using the technology extension to our model, and discrete
technology variance priors on all combinations over the weights 1, 2, and 5. The vertical lines show three weight configurations: the ones
with the smallest and largest mean inferred correlation and the equal weighting (all weights equal to 1). (c) Posterior distributions of mRNA
expression–protein correlations, conditional on exactly one up weighted technology (W = [1, 1, 1, 1, 5]).

mean correlation is slightly larger and more variable, but the
qualitative results are qualitatively similar to those presented
in Section 4.3. Figure 5(c) shows five conditional posteriors
each with exactly one technology assigned weight 5 and the rest
assigned weight 1.

Interestingly, the results in Figure 5(c) are nearly identical
between protein abundance technologies, suggesting that mass
spectrometry and the 2D gel technique imply biases of similar
magnitude on �̂. The results are more variable for the mRNA
expression technologies. Weighting our estimate toward RNA-
Seq yields the lowest correlation estimate (0.80) while weight-
ing the estimate toward custom microarray yields a higher es-
timate (0.85). Crucially, when all technologies are given equal
weight, the posterior mean correlation is close to the highest,
at 0.86. Consistent with previous studies (Lu et al. 2007), this
suggests that by combining data from experiments involving
diverse technologies, we may in fact get better estimates than
any one technology could give us on its own.

5. DISCUSSION

We have presented an original meta-analysis of high-
throughput biological datasets to quantify the coordination be-
tween transcription and translation, in yeast growing exponen-
tially at steady state. Operationally, we have developed a hi-
erarchical random effects model for log-transformed mRNA
expression levels and protein concentrations, which includes a
nonignorable missing data mechanism. The correlation between
latent representations of these two high-dimensional responses
is the estimand of interest in our meta-analysis. This estimand
is traditionally regarded as a nuisance parameter (e.g., Wang,
Carroll, and Liang 1996), thus we develop theory to assess the
effects of noise, structured measurements, and nonignorable
missing data on the estimates, in Section 3.

We defined the correlation between latent mRNA and pro-
tein levels as the estimand of interest, to quantify the notion of
coordination between transcription and translation. Our study
is necessarily restricted to a single state of a simple organism,

and has no direct implications for post-translational regulation
in other settings, dynamically changing environments, other or-
ganisms, or regulation that cannot be measured by correlation
(e.g., amplification of effects). Alternative notions of coordina-
tion are possible, however, some more justifiable than others.
The correlation between observable measurements is a poor
choice, for instance. More sophisticated approaches could con-
sider a notion of an underlying biologic signal, quantified by
means of categorial, or even simply binary, signal (Parmigiani
et al. 2002). In the context of such approaches, it would then be
naturally define the correlation of these categorical, or binary,
random variables as the estimand of interest.

Further evidence that illustrates the relevance and timeliness
of estimates about the scalar estimand of interest here is given
by a recent article that targets the same estimand, in human (Li,
Bickel, and Biggin 2014). In this article, the authors report an
estimate for the correlation between mRNA and protein levels of
about 0.8, which is close to the estimate we report, but slightly
lower, as can be expected given the complexity of a study in
human.

Identifiability of random effects models is an outstanding
issue and needs to be evaluated on a case-by-case basis. As
detailed in Section 3.1, our model meets sufficient conditions
for identifiability for the parameters Li,l[j ] and Gk[j ] for all
combinations of the indices i, j, k, l (e.g., Lee 2007, sec. 2.2.2),
but the nonignorable missing data mechanism complicates the
situation beyond the reach of available theory. However, the
frequentist coverage results in Section 4.1 suggest that all the key
parameters are identifiable. While these results were obtained on
simulated datasets, the design of experiments matched closely
the properties of the data collected for the meta-analysis, and
parameter values were set to the estimated values obtained on the
real data, thus adding confidence to the empirical identification.

We choose not to include information on estimates of the
correlation between mRNA and protein levels reported in pre-
vious studies, including those whose data we included in the
meta-analysis presented in Sections 4.3 and 4.4. This choice
is motivated by the questionable statistical choices previous
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results depend on, including the use of complete cases only in
the presence of nonignorable missing data (caused by the mea-
surement protocols implemented in the various technologies),
the lack of modeling assumptions about important sources of
variation in the data, or the lack of a model altogether. By not
including previously reported correlations, we aimed at produc-
ing an independent analysis, based on a simple model that can
be expected to produce robust estimates.

The exploratory data analysis summarized in Figure 2 sug-
gests that the amount of missing data is inversely proportional to
mRNA expression and protein concentration. This is expected,
since even modern high-throughput technology find it difficult
to complete the measurement protocols successfully for rare
transcripts and proteins (Walther and Mann 2010; Soon, Hari-
haran, and Snyder 2013). For convenience, we fully specified
the nonignorable missing data mechanism by means of a logis-
tic regression, a well-established approach (see, e.g., Rubin and
Little 2002; Ibrahim et al. 2005). Inference results were not sen-
sitive to two alternative specifications of the (MNAR) missing
data mechanism we considered; probit and log-log.

The assumption of normality of the log-transformed measure-
ments of mRNA expression and protein concentration is another
choice of convenience. We intended to carry out the meta-
analysis with a model that included all the important sources
of variation in the data, while simple enough to allow for some
theoretical results on the correlation estimates. The multivari-
ate normal distribution was an obvious choice. Exploratory data
analysis suggested that log-transformed data are approximately
normal. Goodness-of-fit evaluation by means of posterior pre-
dictive checks confirmed that the models in Sections 4.3 and 4.4
fit the data well. The simulation studies based on the multivari-
ate asymmetric Laplace distribution for log-transformed data
presented in Section 4.2 add further confidence that estimates
of the correlation between mRNA and protein levels are robust
to model misspecifications.

5.1 Substantive Conclusions

The main result of our meta-analysis is that the correlation
between mRNA and protein levels, when estimated with a rea-
sonable model, is much higher than previously reported. Our
analyses indicate that a more accurate estimate of such correla-
tion is between 0.82 and 0.86, depending on which model vari-
ant is used, the most conservative estimate being 0.82 ± 0.01.
The proportion of variance explained is expected to increase if
one were to remove some of the within experiment variation
by design. This could be accomplished, for instance, by using
the same sample for both mRNA and protein quantification,
by preparing the sample under conditions that are demonstra-
bly steady state and not altered by a transient stress response,
or by using measurement technology with improved precision
and accuracy. While our study is restricted to a simple organ-
ism and a well-defined condition, the analysis indicates that
there has been widespread overestimation of the role of post-
transcriptional regulation in these conditions (Gygi et al. 1999;
Ingolia et al. 2009), and that suggests that other dominant modes
of regulation are not waiting to be discovered.

Interestingly, the sensitivity analysis that incorporates tech-
nology information into the model suggests that the highest es-
timated correlation is obtained when we assume a bias of equal

magnitude across technologies. This result is consistent with
previous work that suggest improved estimates can be achieved
by averaging across technologies (Lu et al. 2007). While there
is debate about the best high-throughput technology, this result
suggests that consolidating data from different sources, under
the assumption that all technologies are equally good, balances
out the biases from any individual approach. In other words,
new technology is not necessarily better than older but more
mature technology.

Technology alone, however, does not explain all of the vari-
ability between different experiments. We hypothesize that
much of the between experiment variability is due to dispar-
ity in growth rates at time of harvest. Even though the studies in
our data collection claim to analyze samples from exponentially
growing yeast, it is plausible that the growth rates differ due to
experimental protocols. As evidence of this, preliminary results
suggest that the scaling factors,Gk[j ], are highly correlated with
independent estimates of growth rate (Airoldi et al. 2009). We
further explore this hypothesis elsewhere (Csárdi et al. 2015).

Ultimately, our meta-analysis highlights the dangers of ca-
sually using correlations between observables to estimate the
strength of the coordination between processes in the cell. We
have shown that noise, missing data, and model misspecification
can lead to spurious conclusions, in theory, and they actually do
in practice.

APPENDIX A: PROOFS

A.1 Theorem 1

Proof. Let ψ1,2 = cor(L1, L2). Then the covariance between the
observed measurements X1 and X2 is cov(X1, X2) = G1G2ψ1,2 by
Equations (1)–(4). Finally, using Equation (8) for the observed data
variance, we have

cor(X1, X2) = G1G2ψ1,2√
G2

1 + ξ1 + θ1

√
G2

2 + ξ2 + θ2

(A.1)

= ψ1,2√
1 + (ξ1 + θ1)/G2

1

√
1 + (ξ2 + θ2)/G2

2

(A.2)

< ψ1,2. (A.3)

�

A.2 Theorem 2

Proof. In the proof, we do not need to assume that the latent response
variances are fixed, they can vary freely. This is because theGk = G̃k =
1 restriction already ensures identifiability. We denote this new model,
without unit variances, by Mp . Similarly, our new misspecified model
without unit variances is denoted by M̃p . Models M and M̃ will be a
special case of the proof.

Bunke and Milhaud (1998) showed, under mild conditions satisfied
here, that when the maximum likelihood estimation (MLE) converges
to a unique value, the posterior mean converges almost surely to that
same value. Thus, instead of working with the posterior mean ψ̃PM

1,2 , it
suffices to prove that the inequality holds for the MLE: ψ̃MLE

1,2 ≤ ψ1,2,
with equality only if ξ = 0.

Consider multivariate normal data X = [X1, . . . ,X2n] generated
from the true model Mp . Under Mp , cov(X) = � can be written
as

� = �1 ⊕ �1 + γ 12n1′
2n,

�1 = (θIn/2 + ξ1n/21′
n/2) ⊕ (θIn/2 + ξ1n/21′

n/2) + φ1n1′
n, (A.4)
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where ⊕ is the direct sum operator, and 1n is the constant one column
vector with n rows. In (A.4), we define ψ1 = ψ2 = γ + φ. As noted
at the beginning of the proof, we do not assume that ψ1 = ψ2 = 1,
since fixing Gk = G̃k = 1 ensures identifiability for both models. We
also assume γ ≥ 0, θ > 0, ξ ≥ 0, φ ≥ 0. The correlation between the
responses can be written as ψ1,2 = γ /(φ + γ ) now.

The misspecified model M̃p has covariance matrix �̃, with the
following structure:

�̃ = (θ̃In + φ̃1n1′
n) ⊕ (θ̃In + φ̃1n1′

n) + γ̃ 12n1′
2n, (A.5)

where γ̃ ≥ 0, θ̃ > 0, φ̃ ≥ 0. Again, we do not assume ψ̃1 = ψ̃2 = 1
here, and ψ̃1 = ψ̃2 = φ̃ + γ̃ , and the correlation between the responses
is ψ̃1,2 = γ̃ /(φ̃ + γ̃ ).

Figure 6 shows the structure of both the true � and the misspecified
�̃.

First, we reparameterize �̃ in terms of its eigenvalues. We present
three properties about the eigenstructure of �̃:

1. �̃12n = (θ̃ + nφ̃ + 2nγ̃ )12n, so 1/
√

2n12n is a normalized eigen-
vector of �̃ with eigenvalue θ̃ + nφ̃ + 2nγ̃ . This can be seen
easily by performing the matrix-vector product:

�̃12n =
[

(θ̃In + φ̃1n1′
n)1n

(θ̃In + φ̃1n1′
n)1n

]
+ 2nγ̃ 12n

=
[

(θ̃ + nφ̃)1n
(θ̃ + nφ̃)1n

]
+ 2nγ̃ 12n (A.6)

= (θ̃ + nφ̃)12n + 2nγ̃ 12n = (θ̃ + nφ̃ + 2nγ̃ )12n. (A.7)

2. Let 1±
2n be a column vector with n ones on the top and n

minus ones on the bottom: 1±
2n = [1n| − 1n]′. Then �̃1±

2n =
(θ̃ + nφ̃)1±

2n, so 1/
√

2n1±
2n is a normalized eigenvector of �̃ with

eigenvalue θ̃ + nφ̃:

�̃1±
2n =

[
(θ̃In + φ̃1n1′

n)1n
−(θ̃In + φ̃1n1′

n)1n

]
+ 02n

=
[

(θ̃ + nφ̃)1n
−(θ̃ + nφ̃)1n

]
= (θ̃ + nφ̃)1±

2n. (A.8)

3. The remaining 2n− 2 eigenvalues are all equal to θ̃ . To see this,
we show that if a vector v is orthogonal to both 12n and 1±

2n, then

it is an eigenvector of �̃ with eigenvalue θ̃ . We partition v into
two blocks of equal size: v = [v�|v⊥]′. If v is orthogonal to 12n,
then its elements sum up to zero. If it is orthogonal to 1±

2n, then
the elements of both v� and v⊥ sum up to zero as well. So we
have

�̃v =
[

(θ̃In + φ̃1n1′
n)v

�

(θ̃In + φ̃1n1′
n)v

⊥

]
+ 02n =

[
θ̃v�

θ̃v⊥

]
= θ̃v. (A.9)

Thus, our eigendecomposition is �̃ = λ1v1v′
1 + λ2v2v′

2 + λ3V3,
where

λ1 = θ̃ + nφ̃ + 2nγ̃ , v1v′
1 = 1

2n
12n1′

2n, (A.10)

λ2 = θ̃ + nφ̃, v2v′
2 = 1

2n
1±

2n(1
±
2n)

′, (A.11)

λ3 = θ̃ , V3 = (I − 1

n
1n1′

n) ⊕ (I − 1

n
1n1′

n), (A.12)

and we will parameterize �̃ with λ1, λ2, λ3 instead of θ̃ , φ̃, and γ̃ .
The likelihood of a covariance matrix 	, for X is given by

L(	|X) = (2π )−N(n1+n2)/2
N∏
i=1

[
det(	)−1/2 exp

(
−1

2
X′
i	

−1Xi

)]
,

(A.13)

and the log-likelihood is

logL(	|X) = −N (n1 + n2)

2
log(2π ) − 1

2

N∑
i=1

log det(	)

− 1

2

N∑
i=1

(X′
i	

−1Xi),

= −N (n1 + n2)

2
log(2π ) − N

2
log det(	)

− 1

2
tr((N − 1)S	−1), (A.14)

where S is the sample covariance matrix of X.
For a given dataset, N is constant, so we can divide (A.14) by N/2

and omit the constant terms to get

logL(	|X) ∝ − log det(	) − tr
(N − 1

N
S	−1

)
. (A.15)

Figure 6. The structure of the covariance matrix � of the true model Mp (left) and the covariance matrix �̃ of the misspecified model M̃p

(right), from Theorem 2. The marginal variances of the replicates are σ 2 = θ + ξ + φ + γ and σ̃ 2 = θ̃ + φ̃ + γ̃ and the experiment covariances
are ε = ξ + φ + γ .
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In the limit as N → ∞, (N − 1)/N → 1 and S → � elementwise
with probability 1. Since the likelihood function is continuous, the
log-likelihood is simply

lim
N→∞

logL(	|X) ∝ log L̃(	|�) = − log det(	) − tr(�	−1), (A.16)

by the continuous mapping theorem. We maximize log L̃ over 	, where
	 is of the same form as �̃ (Equation (A.5)). For simplicity we use �̃

instead of 	 in the following.
We find the maximum of log L̃ as a function of λ1, λ2, and λ3.

Since the parameter space is not compact, we first evaluate the log-
likelihood at the boundaries. It is easy to see that at each boundary, the
log-likelihood diverges to negative infinity:

lim
θ̃→∞

log L̃ = lim
θ̃→0

log L̃ = lim
φ̃→∞

log L̃ = lim
γ̃→∞

log L̃ = −∞. (A.17)

If at least one of θ̃ , φ̃, or γ̃ goes to infinity, then at least one eigenvalue
of �̃ goes to infinity (see Equations (A.10)–(A.12)), so − log det(	)
goes to negative infinity and the second term of the log-likelihood is
a finite constant. If θ̃ → 0, then the first term goes to positive infinity,
the second to negative infinity, but because of the logarithm, the second
term dominates and the likelihood goes to negative infinity. This means
that the likelihood has a global maximum in the interior of the parameter
space.

At the MLE, the derivative of the log-likelihood must vanish. Differ-
entiating the log-likelihood in terms of an arbitrary parameter p gives

d log L̃
dp

= − tr

(
�̃

−1 d�̃

dp

)
+ tr

(
�̃

−1 d�̃

dp
�̃

−1
�

)
, (A.18)

where we use the fact that

d det(�̃)

dp
= tr

(
�̃

−1 d�̃

dp

)
,

d�̃
−1

dp
= −�̃

−1 d�̃

dp
�̃

−1
. (A.19)

The derivatives in terms of the three parameters are

d�̃

dλ1
= v1v′

1,
d�̃

dλ2
= v2v′

2,
d�̃

dλ3
= V3. (A.20)

In the following, we use the fact that �̃v1 = λ1v1 and �̃
−1

v1 = 1/λ1v1

and set the first partial derivative to zero.

d log L̃
dλ1

= − tr

(
1

λ1
v1v′

1

)
+ tr

(
1

λ2
1

v1v′
1�

)
= 0, (A.21)

which, using v1v′
1 = 1/(2n)12n1′

2n, simplifies to

− 1

λ1
+ 1

2nλ2
1

(4n2γ + 2n2φ + n2ξ + 2nθ ). (A.22)

From here we can easily see that the MLE of λ1 is

λMLE
1 = 2nγ + nφ + 1

2
nξ + θ. (A.23)

A similar argument leads to the MLE for λ2:

λMLE
2 = nφ + 1

2
nξ + θ. (A.24)

For the third parameter, we have

d log L̃
dλ3

= − tr
( 1

λ3
V3

)
+ tr

( 1

λ2
3

V3�
)

= 0. (A.25)

The second term is the trace of

1

λ2
3

V3� = 1

λ2
3

[
(In − 1

n
1n1′

n) ⊕ (In − 1

n
1n1′

n)

]
�

= 1

λ2
3

[
� − 1

n
(1n1′

n ⊕ 1n1′
n)�

]
(A.26)

= 1

λ2
3

[
� − 1

n

(
1n1′

n�n
2γ 1n1′

n

n2γ 1n1′
n1n1

′
n�

)]
, (A.27)

and the trace itself is

tr

(
1

λ2
3

V3�

)
= 1

λ2
3

(
2nθ + 2nφ + 2nξ + 2nγ

− 2

n

(
n2φ + n2γ + n2

2
ξ + nθ

))
(A.28)

= 1

λ2
3

((2n− 2)θ + nξ ). (A.29)

Using this with Equation (A.25), we get

2(n− 1)
1

λ3
= 1

λ2
3

((2n− 2)θ + nξ ), λMLE
3 = θ + n

2n− 2
ξ.(A.30)

Going back to the original parameterization is easy:

θ̃ = λ3, φ̃ = λ2 − λ3

n
, γ̃ = λ1 − λ2

2n
, (A.31)

and yields

θ̃MLE = θ + n

2n− 2
ξ, φ̃MLE = φ + n− 2

2n− 2
ξ, γ̃MLE = γ.

(A.32)

To show that the posterior mean of the misspecified model underes-
timates the true correlation, we need to show that

(
ψ̃PM

1,2 = ψ̃MLE
1,2 = ) γ̃MLE

φ̃MLE + γ̃MLE
= γ

φ̃MLE + γ
≤ γ

φ + γ

( = ψ1,2

)
.

(A.33)

This is equivalent to φ̃MLE ≥ φ, which holds, with equality only if
ξ = 0. This completes the proof. �

A.3 Theorem 3

Proof. Denote ρ = cor(X, Y ) > 0 and ρobs = cor(Xobs, Y obs). As-
sume, without loss of generality, that X and Y have mean zero and unit
variance. We can write Y as

Y = ρX +
√

1 − ρ2Z, (A.34)

where Z is a standard normal, independent of X. By assumption, we
only observe Xobs, with var(Xobs) = c, with 0 < c < 1. By Equation
(A.34), we then have

Y obs = ρXobs +
√

1 − ρ2Z (A.35)

var(Y obs) = ρ2 var(Xobs) + (1 − ρ2) var(Z) (A.36)

= ρ2c + 1 − ρ2 = (1 − ρ2)(1 − c) + c > c. (A.37)

Similarly, cov(Xobs, Y obs) = ρc. Assuming ρ > 0, it is true that

ρobs = cov(Xobs, Y obs)√
var(Xobs)

√
var(Y obs)

= cρ√
c
√

var(Y obs)
<

cρ√
c
√
c

= ρ.

(A.38)

�
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Figure B1. Distribution of observed and imputed mRNA and protein levels, in different experiment, together with the logistic censoring
probability. A: LEE protein abundance data, B: LU protein abundance data, C: CAUS mRNA expression dataset.

Figure B2. Principal component analysis of the mRNA replicates.
Only mRNAs that were measured in all replicates, are included here,
390 genes in total. It is clear that most of the variation is according
to the lab, where the experiment was performed. In the case of the
Lipson and Ingolia labs, the two and three batches are also apparent
and motivate our choice to treat these as separate experiments.

Table B1. Details about missing data. The tables show the number of
proteins (left) and mRNAs (right) with a given number of

observations. The number of observations is in the first columns, the
number of proteins/mRNAs with that many observation in the second
columns, and the number of proteins/mRNAs with at most that many

observations in the third columns

Proteins

# obs. # prot. cumul. # prot.
0 813 813
1 445 1258
2 249 1507
3 131 1638
4 79 1717
5 72 1789
6 129 1918
7 334 2252
8 689 2941
9 624 3565
10 453 4018
11 342 4360

(Continued)

Table B1. (Continued)

Proteins

12 290 4650
13 235 4885
14 180 5065
15 191 5256
16 194 5450
17 204 5654
18 135 5789
19 49 5838
20 16 5854

mRNAs

# obs. # mRNAs cumul. # mRNAs
0 2 2
1 1 3
2 2 5
3 1 6
4 2 8
5 2 10
6 37 47
7 21 68
8 13 81
9 12 93
10 21 114
11 12 126
12 18 144
13 24 168
14 22 190
15 28 218
16 36 254
17 41 295
18 56 351
19 33 384
20 30 414
21 21 435
22 30 465
23 23 488
24 40 528
25 49 577
26 76 653
27 90 743

(Continued)
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Table B1. (Continued)

mRNAs

28 107 850
29 160 1010
30 210 1220
31 342 1562
32 370 1932
33 497 2429
34 685 3114
35 924 4038
36 809 4847
37 617 5464
38 390 5854

[Received August 2013. Revised August 2014.]
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